
LionSealWhite

Lecture 7

Theory for polynomial matrices

Hermite and Smith normal forms

Smith McMillan form

Poles and Zeros

Rugh Ch 16-17 (can skip proofs of 16.7,17.4,17.5,17.6)
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Polynomial matrix fraction descriptions

There are two natural generalisation to the SISO description

G(s) = n(s)
d(s)

Right polyomial matrix fraction description:

G(s) = NR(s)DR(s)−1
{
DR(s)X(s) = U(s)
Y (s) = NR(s)X(s)

Left polynomial matrix fraction description

G(s) = DL(s)−1NL(s) DL(s)Y = NL(s)U

where NR, DR, NL, DL are polynomial matrices
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Left and Right MFDs - example

G(s) =
 1
s+ 2

2
s+ 1


Right MFD G(s) =

1 2
s+ 2 0

0 s+ 1

−1

Left MFD G(s) = ((s+ 2)(s+ 1))−1
s+ 1 2(s+ 2)


Note that the dimensions of DR and DL are not the same

Note however that

det DR(s) = det DL(s) = (s+ 2)(s+ 1)
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Questions

What properties can be seen from D(s) and N(s)?

What are the poles and zeros?

Example: The MIMO system

G(s) =


s+ 1
s+ 2 0

0 s+ 2
s+ 1


has poles in −1,−2 and zeros in −1,−2 (but in different “directions”)

Note however that det G(s) ≡ 1

How to cancel “common factors” in N and D?
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Common Factors of N(s) and D(s)

R(s) is said to be a common right divisor if ∃ Ñ(s), D̃(s)N(s)
D(s)

 =
Ñ(s)
D̃(s)

R(s)

N(s)D−1(s) = Ñ(s)D̃−1(s)
If R(s) can be written R(s) = S(s)R̃(s) for every crd R̃(s), then
R(s) is a greatest common right divisor (gcrd)

A polynomial matrix whose inverse is also polynomial is a trivial
common factor. Such matrix is called “unimodular”.

If a gcrd of N and D is unimodular then N and D are said to be
“right coprime”

Common left divisor, gcld, left coprime are defined analogously
for left MFDs
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Unimodular Matrices

A(s) unimodular ⇔ det A(s) is a nonzero constant

Proof:
If there is B(s) with A(s)B(s) = B(s)A(s) = I , then
detA(s) · detB(s) = 1 and both A(s) and B(s) have constant
nonzero determinants.

If A(s) has constant nonzero determinant then

A(s)adjA(s) = detA(s)I = cI 6= 0

and hence A−1(s) = adjA(s)/c which is a polynomial matrix, hence
A(s) is unimodular
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Unimodular Matrices

Examples of unimodular matrices
0 1 0
1 0 0
0 0 1




1 a(s) 0
0 1 0
0 0 1



a 0 0
0 1 0
0 0 1


When multiplying a matrix from the left they correspond to

exchange of first two rows

addition of a(s) times second row to first row

multiplication of first row by a

Elementary row (column) operations = unimodular matrix left (right)
multiplication
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Hermite Form - row operations version

For a polynomial matrix P (s) with independent columns it is possible
to find a unimodular matrix U(s) (row operations) so

U(s)P (s) =



× × · · · ×
0 × · · · ×

0 0 . . .
...

...
... ×

0 0 · · · 0
...

...
...

0 0 · · · 0


where diagonal elements are

nonzero, monic polynomials

of higher degree than elements in the same column
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Hermite Form - column operation version

For a matrix with independent rows, an analogous lower triangular
form can be obtained by multiplying from the right with a unimodular
matrix (e.g. by column operations)

P (s)C(s) =


× 0 0 · · · 0 · · · 0
× × 0 · · · 0 · · · 0
...

...
. . .

...
...

× × · · · × 0 · · · 0


Proof of Hermite form: Iterative constructive proof, similar to Gauss
elimination, but using “polynomial division with remainder” as basic
step instead of division
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Hermite Form in Maple

with(LinearAlgebra); with(MatrixPolynomialAlgebra);
G:= Matrix(4,2,[s^2+3*s+2,0,0,s^2+3*s+2,s+2,1,s,2*s+1]);
H := HermiteForm(G,s);
latex(G);latex(H);

G =


s2 + 3s+ 2 0

0 s2 + 3s+ 2
s+ 2 1

2 2s+ 1


H =


1 1
0 s+ 1
0 0
0 0


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Finding common factors and computing a gcrd

Given G(s) = NR(s)D−1
R (s), use Hermite to get unimodular U :U11(s) U12(s)

U21(s) U22(s)

DR(s)
NR(s)

 =
R(s)

0


With V = U−1 we getDR(s)

NR(s)

 =
V11(s) V12(s)
V21(s) V22(s)

R(s)
0


R is a gcrd of NR and DR

V11 is nonsing., detV11 = const · detU22

G(s) = V21(s)V −1
11 (s) right coprime MFD

G(s) = −U22(s)−1U21(s) left coprime MFD
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3 min Exercise

Write down the dual result if we instead have a left MFD

G(s) = D−1
L (s)NL(s)

The audience is thinking
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Polynomial Maple Toolbox

with(LinearAlgebra):
with(MatrixPolynomialAlgebra):

List of MatrixPolynomialAlgebra Package Commands

Coeff ColumnReducedForm Degree HermiteForm Lcoeff
Ldegree LeftDivision MahlerSystem MatrixGCLD MatrixGCRD
MatrixLCLM MatrixLCRM MinimalBasis PopovForm RightDivision
RowReducedForm SmithForm Tcoeff
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Example

G(s) =


s

(s + 1)2 (s + 2)2
s

(s + 2)2

− s

(s + 2)2 − s

(s + 2)2

 =

=
 s s

−s(s + 1)2 −s

(s + 1)2(s + 2)2 0
0 (s + 2)2

−1

= NRD−1
R

Find common factors and compute left MFD and right MFD

P (s) :=
DR(s)

NR(s)

 =


(s + 1)2(s + 2)2 0

0 (s + 2)2

s s
−s(s + 1)2 −s


U(s)

P (s) I
 =

R(s)
0

 U(s)

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Example - continued

with(MatrixPolynomialAlgebra): with(LinearAlgebra):with(linalg):
P:=Matrix([[(s+1)^2*(s+2)^2,0],[0,(s+2)^2],[s,s],[-s*(s+1)^2,-s]]);
PI:=convert(augment(P,IdentityMatrix(4,4)),Matrix):
RU:=map(factor,HermiteForm(PI,s)):
R:=submatrix(RU,1..2,1..2);
U:=submatrix(RU,1..4,3..6):
V:=map(factor,inverse(U)):
V11:=submatrix(V,1..2,1..2);V21:=submatrix(V,3..4,1..2);
U21:=submatrix(U,3..4,1..2);U22:=submatrix(U,3..4,3..4);
latex(R);latex(U21);latex(U22);latex(V11); latex(V21);

RU =


1 1 1/4 1/4 + s/2 −s2/2− 2 s− 5/2 s/4 + 1/2

0 s+ 2 0 −s/4 + 1/2 (s+ 1)2 /4 1/4

0 0 s s 0 (s+ 2)2

0 0 0 s2 − (s+ 2) (s+ 1)2 −s− 2


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Example - continued

Common factor

R =
[ 1 1

0 s+ 2

]

Submatrices of U and V needed:

U22 =

 0 (s+ 2)2

− (s+ 2) (s+ 1)2 −s− 2

 , U21 =
[
s s

0 s2

]

V21 =

 s 0

−s (s+ 1)2 s2

 , V11 =

 (s+ 1)2 (s+ 2)2 − (s+ 2) (s+ 1)2

0 s+ 2


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Example - continued

Right coprime MFD of G(s) = V21(s)V −1
11 (s):

NRD
−1
R =

 s 0

−s (s+ 1)2 s2

 (s+ 1)2 (s+ 2)2 − (s+ 2) (s+ 1)2

0 s+ 2

−1

Left coprime MFD of G(s) = −U−1
22 (s)U21(s):

D−1
L NL =

 0 − (s+ 2)2

(s+ 2) (s+ 1)2 s+ 2

−1 [
s s

0 s2

]

Note that

det DR(s) = det DL(s) = (s+ 1)2(s+ 2)3

det NR(s) = det NL(s) = s3
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A useful result

Assume P (s) and Q(s) have the same number of columns, n. The
following are then equivalent (left version also exists)

P (s) and Q(s) are right coprime

There exists polynomial matrices X(s) and Y (s) so (Bezout
identity)

X(s)P (s) + Y (s)Q(s) = In

For every complex s

rank
Q(s)
P (s)

 = n

Proof: Follows directly from the Hermite form.
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Coprime MFDs are (almost) unique

Theorem If we have two coprime right MFDs

G(s) = N1(s)D−1
1 (s) = N2(s)D−1

2 (s)

then there is a unimodular matrix U(s) such that

N1(s) = N2(s)U(s), D1(s) = D2(s)U(s)

Remark: As a consequence detD1(s) = k detD2(s), k 6= 0

An analogous result of course holds for left coprime MFDs
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Comparing left and right MFDs

Theorem If

G(s) = D−1
L (s)NL(s) = NR(s)D−1

R (s)

with both MFDs coprime, then

detDL(s) = k detDR(s), k 6= 0

The degree of D(s) in any coprime MFD is called the McMillan
degree of G(s). This degree equals the dimension of any minimal
representation of G(s)

To show this, and to find a state space realisation, one more property
of MFDs is studied in Rugh: “column reduced” (right MFD), or “row
reduced” (left MFD). We will skip the proof of these results (e.g. Rugh
17.4).
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An Observation

The left MFD (sI−A)−1B is coprime ⇔ {A,B} is controllable

The right MFD C(sI−A)−1 is coprime ⇔ {A,C} is observable
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Smith Form and equivalence

By simultaneous row and column operations we can go beyond the
Hermite form and obtain a diagonal form

The poles and zeros of the systems can then be seen clearly

Two polynomial matrices A(s) and B(s) are “equivalent” if A(s) can
be transformed into B(s) using elementary row and column
operations. We then write

A(s) ∼ B(s)

Remark: A(s) ∼ B(s) if and only if there exist P (s) and Q(s) such
that B(s) = P (s)A(s)Q(s) where P (s) and Q(s) are products of
elementary matrices, i.e. unimodular matrices
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Theorem - Smith Normal Form

For any polynomial matrix A(s) it holds that

A(s) ∼
[
Dr(s) 0

0 0

]

where
Dr(s) = diag(i1(s), i2(s), . . . , ir(s))

and where

ik(s) are monic polynomials

ik divides ik+1 for k = 1, 2, . . . , r − 1.

Definition : ik(s), k = 1, 2, . . . , r are called the invariant
polynomials of A(s).
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Example - Maple

with(MatrixPolynomialAlgebra):
A:=Matrix([[s+2,1],[s,2*s+1]]);

[s + 2 1 ]
A := [ ]

[ s 2 s + 1]

> SmithForm(A);
[1 0 ]
[ ]
[ 2 ]
[0 2 s + s + 1]

> latex(map(factor,SmithForm(A)));

 1 0

0 (s+ 1)2


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Definition: Determinantal divisors

A determinantal divisor dj(s) of a polynomial matrix A(s) is the
greatest common divisor of all the minors of order j in A(s),
j = 1, 2, . . . ,min(m,n).

d1(s) = GCD of all elements

d2(s) = GCD of all 2× 2 subdeterminants

etc

dn(s) = const · determinant of A(s)

where the constant is chosen so dn becomes monic.

25 / 36



LionSealWhite

Lemma

The determinantal divisors are invariant under elementary operations.

Proof: Let B(s) = P (s)A(s) where P (s) is unimodular. By the
Cauchy-Binet formula for determinants

det(B[I, J ](s)) =
∑

#K=j
det(P [I,K](s))det(A[K,J ](s))

where #I = #J = j. It follows that A(s) and B(s) have the same
determinantal divisors (think).
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Theorem

The Smith form is unique, and can be found from the determinantal
divisors

Proof: A matrix 

i1(s) 0 · · · 0 · · · 0
0 i2(s) · · · 0 · · · 0
...

...
. . .

...
0 0 ir(s) 0
...

...
. . .

...
0 0 · · · 0 · · · 0


where ik divides ik+1 for k = 1, 2, . . . , r − 1 has determinantal
divisors given by
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Proof continued

dm(s) = i1(s)i2(s) · · · im(s), m = 1, 2, . . . , r
dm(s) = 0, m > r

Hence

i1(s) = d1(s)
im(s) = dm(s)/dm−1(s), 2 ≤ m ≤ r

Since the determinantal divisors are invariant under elementary
operations, ik(s) are uniquely determined by the original matrix.
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Example

Consider the earlier example

A(s) =
s+ 2 1

s 2s+ 1


The determinantal divisors are

d1: GCD of (s+ 2), 1, s, (2s+ 1), i.e. d1 = 1

d2: det A(s) = (s+ 2)(2s+ 1)− s = 2(s+ 1)2, i.e. d2 = (s+ 1)2

Hence the Smith form is (as already computed by Maple)

A(s) ∼
1 0

0 (s+ 1)2


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Theorem

Two polynomial matrices of the same order are equivalent if and only if
they have the same invariant polynomials

Proof: Use elementary operations to bring both matrices to their Smith
form. The result follows from the uniqueness of the Smith form.
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The Smith McMillan Form

Let d(s) be the least common multiple of denominators and write

G(s) = 1
d(s)N(s)

Find Smith form of N(s) = P (s)Λ(s)Q(s), P,Q unimodular

The Smith McMillan form is then

G(s) = P (s)
diag

(
εi(s)
ψi(s)

)
0

0 0

Q(s)

where εi, ψi without common factors

εi(s)
ψi(s)

= λi(s)
d(s) , ψi+1(s)|ψi(s), εi(s)|εi+1(s), ψ1(s) = d(s)
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Poles and Zeros

Using the Smith McMillan form we define

The roots of εi(s) are the (transmission) zeros

The roots of ψi(s) are the poles

(counted with multiplicities)
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Example

 1
s+1

1
(s+1)(s+2)

s
(s+1)(s+2)

2s+1
(s+1)(s+2)

 = 1
(s+ 1)(s+ 2)

s+ 2 1
s 2s+ 1


The Smith McMillan form is

1
(s+ 1)(s+ 2)

1 0
0 (s+ 1)2

 =


1

(s+ 1)(s+ 2) 0

0 s+ 1
s+ 2


with

ε1 = 1, ε2 = s+ 1; ψ1 = (s+ 1)(s+ 2), ψ2 = s+ 2

zeros: −1
poles: −1,−2,−2
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Another Example

Consider a system of the form

G(s) =


b1(s)
a1(s)

b2(s)
a2(s)

0 b3(s)
a3(s)


where b1, b2, b3, a1, a2, a3 have no common factors.

G(s) = 1
a1(s)a2(s)a3(s)

b1(s)a2(s)a3(s) b2(s)a1(s)a3(s)
0 b3(s)a1(s)a2(s)


The invariant factors are

i1(s) = 1
i2(s) = b1(s)b3(s)a1(s)a2

2(s)a3(s)
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Example

The Smith-McMillan form of G(s) is hence

1
a1(s)a2(s)a3(s)

1 0
0 b1(s)b3(s)a1(s)a2

2(s)a3(s)

 =

=


1

a1(s)a2(s)a3(s) 0

0 b1(s)b3(s)a2(s)


Poles: Roots of a1(s)a2(s)a3(s)

Zeros: Roots of b1(s)b3(s)a2(s)

Roots of a2(s) are both poles and zeros of the system!
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Invariants in transfer functions

Let G(s) have different left or right coprime MFDs. Then it can be
seen that

All numerator matrices N(s) have the same Smith form

All denominator matrices D(s) have the same Smith form (except
for extra 1s on the diagonal)

The invariant polynomials of the numerators matrices are the
εi(s) of the SmithMcMillan form of G

The invariant polynomials of the denominator matrices are the
ψi(s) of the SmithMcMillan form of G

The zeros are the s-values for which the rank of N(s) drops
below its normal rank

The poles are the roots of detD(s) = 0
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