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Introduction

Adapt to adjust to a specified use or situation

Tune to adjust for proper response

Autonomous independence, self-governing

Learn to acquire knowledge or skill by study, instruction or experience

Reason the intellectual process of seeking truth or knowledge by

infering from either fact of logic

Intelligence the capacity to acquire and apply knowledge

In Automatic Control

Automatic tuning - tuning on demand

Gain scheduling

Adaptation - continuous adjustment
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Parameter Variations

Robust control

Find a control law that is insensitive to parameter variations

Gain scheduling

Measure variable that is well correlated with the parameter

variations and change controller parameters

Adaptive control

Design a controller that can adapt to parameter variations

Many different schemes

Model reference adaptive control

The self-tuning regulator

L1 adaptive control (later in LCCC)

Dual control

Control should be directing as well as investigating!

Bo Bernhardsson and K. J. Åström Adaptive Control



A Brief History of Adaptive Control

Early work driven adaptive flight control 1950-1970.

The brave period: Develop an idea, hack a system and make flight

tests.

Several adaptive schemes emerged no analysis

Disasters in flight tests

Emergence of adaptive theory 1970-1990

Model reference adaptive control emerged from stability theory

The self tuning regulator emerged from stochastic control theory

Microprocessor based products 1980 – Novatune

Auto-tuners for PID control 1980

Robustness 1990

L1-adaptive control - Flight control 2010
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Adaptive Schemes

Parameter
adjustment

Controller Plant

Controller
parameters

Control
 signal

Output
Setpoint

Two loops

Regular feedback loop

Parameter adjustment

loop

Schemes

Model Reference Adaptive

Control MRAS

Self-tuning Regulator STR

Dual Control
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Dual Control - Feldbaum

u yNonlinear
control law

Process

 Calculation
of hyperstate

Hyperstate

  u c

No certainty equivalence

Control should be directing as well as investigating!

Intentional perturbation to obtain better information

Conceptually very interesting

Unfortunately very complicated - state is conditional probability

distribution of “states” and parameters

Helmerson KJA, worth a second look?
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Model Reference Adaptive Control

Adjustment
mechanism

u

Model

Controller parameters

Plant
y

Controller

  ym

  uc

Linear feedback from e = y− ym is not adequate for parameter

adjustment!

The MIT rule
dθ

dt
= −γ e

�e

�θ

Many other versions
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An Example

Process
dy

dt
= −ay+ bu

Model
dym

dt
= −amym + bmuc

Controller

u(t) = θ1uc(t) − θ2y(t)

ideal parameters

θ1 = θ 01 =
bm

b

θ2 = θ 02 =
am − a

b
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MIT Rule

The error

e = y− ym, y=
bθ1

p+ a+ bθ2
uc p =

d xt

dt

�e

�θ1
=

b

p+ a+ bθ2
uc

�e

�θ2
= −

b2θ1
(p+ a+ bθ2)2

uc = −
b

p+ a+ bθ2
y

Approximate

p+ a+ bθ2 ( p+ am

Hence

dθ1
dt

= −γ

(

am

p+ am
uc

)

e,
dθ2
dt

= γ

(

am

p+ am
y

)

e
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Block Diagram

−

Σ

Π

+

e

u y

Σ

Π

Π

Π

−

+
  uc

    Gm (s)

    G(s)

  θ1

  θ2

  

γ

s  
−

γ

s

  

am

s + am   

am

s + am

dθ1
dt

= −γ

(

am

p+ am
uc

)

e,
dθ2
dt

= γ

(

am

p+ am
y

)

e

Example a = 1, b = 0.5, am = bm = 2.
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Simulation

Input and output
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Adaptation Law from Lyapunov Theory

The idea

Determine a controller structure

Derive the Error Equation

Find a Lyapunov function

Determine an adaptation law

A first order system

State feedback

Output feedback

Passivity

Error augmentation>
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First Order System

Process model
dy

dt
= −ay+ bu

Desired response
dym

dt
= −amym + bmuc

Controller

u = θ1uc − θ2y

The error

e = y− ym

de

dt
= −ame− (bθ2 + a− am)y+ (bθ1 − bm)uc

Candidate for Lyapunov function

V (e,θ1,θ2) =
1

2

(

e2 +
1

bγ
(bθ2 + a− am)

2 +
1

bγ
(bθ1 − bm)

2

)
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Derivative of Lyapunov Function

V (e,θ1,θ2) =
1

2

(

e2 +
1

bγ
(bθ2 + a− am)

2 +
1

bγ
(bθ1 − bm)

2

)

Derivative of Lyapunov function

dV

dt
= e
de

dt
+
1

γ
(bθ2 + a− am)

dθ2
dt

+
1

γ
(bθ1 − bm)

dθ1
dt

= −ame
2 +
1

γ
(bθ2 + a− am)

(

dθ2
dt

− γ ye

)

+
1

γ
(bθ1 − bm)

(

dθ1
dt

+ γ uce

)

Adaptation law

dθ1
dt

= −γ uce,
dθ2
dt

= γ ye
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Lyapunov (left) vs MIT Rule (right)

−

Σ

Π

+

e

u y

Σ

Π

Π

Π

−

+  u c

    Gm (s)

    G(s)

  θ1

  θ2

  

γ

s  
−

γ

s

,

−

Σ

Π

+

e

u y

Σ

Π

Π

Π

−

+
  uc

    Gm (s)

    G(s)

  θ1

  θ2

  

γ

s  
−

γ

s

  

am

s + am   

am

s + am

Do the filters matter?
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Simulation

Process inputs and outputs
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State Feedback

dx

dt
= Ax + Bu

Desired response to command signals

dxm

dt
= Amxm + Bmuc

Control law

u = Muc − Lx

The closed-loop system

dx

dt
= (A− BL)x + BMuc = Ac(θ )x + Bc(θ )uc

Parametrization

Ac(θ
0) = Am, Bc(θ

0) = Bm

Compatibility conditions
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The Error Equation

dx

dt
= Ax + Bu

Desired response
dxm

dt
= Amxm + Bmuc

Control law

u = Muc − Lx

Error

e = x − xm
de

dt
=
dx

dt
−
dxm

dt
= Ax + Bu− Amxm − Bmuc

Hence

de

dt
= Ame+ (A− Am − BL) x + (BM − Bm)uc

= Ame+ (Ac(θ ) − Am) x + (Bc(θ ) − Bm)uc

= Ame+ Ψ
(

θ − θ 0
)
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The Lyapunov Function

The error equation

de

dt
= Ame+ Ψ

(

θ − θ 0
)

Try

V (e,θ ) =
1

2

(

γ eTPe+ (θ − θ 0)T(θ − θ 0)
)

dV

dt
= −

γ

2
eTQe+ γ (θ − θ 0)ΨTPe+ (θ − θ 0)T

dθ

dt

= −
γ

2
eTQe+ (θ − θ 0)T

(

dθ

dt
+ γ ΨTPe

)

where Q positive definite and

ATmP+ PAm = −Q

Adaptation law and derivative of Lyapunov function

dθ

dt
= −γ ΨTPe,

dV

dt
= −

γ

2
eTQe
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Extensions

Output feedback

Kalman Yakubovich Lemma - Strictly positive real systems

Various tricks

Augmented error

Error normalization dθ
dt
= −γ e �e�θ

L1 Adaptive control
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The Least Squares Method

The problem: The Orbit of Ceres

The problem solver: Karl Friedrich Gauss

The principle: Therefore, that will be the most probable system of

values of the unknown quantities, in which the sum of the squares of

the differences between the observed and computed values, multiplied

by numbers that measure the degree of precision, is a minimum.

In conclusion, the principle that the sum of the squares of the

differences between the observed and computed quantities must be a

minimum, may be considered independently of the calculus of

probabilities.

An observation: Other criteria could be used. But of all these

principles ours is the most simple; by the others we should be led into

the most complicated calculations.
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The Book
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Recursive Least Squares

S
u

y

θ̂

yt+1 = −a1yt − a2yt−1 + ⋅ ⋅ ⋅+ b1ut + ⋅ ⋅ ⋅+ et+1

= ϕTt θ + et+1

θ̂ t = θ̂ t−1 + Kt(yt −ϕ tθ̂ t−1)

Kt = Pt−1ϕ t(λ +ϕTt Pt−1ϕ t)
−1 = Ptϕ t

Many versions: directional forgetting, resetting, ...

Square-root filtering (good numerics!)
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Persistent Excitation PE

Introduce

c(k) = lim
t→∞

1

t

t
∑

i=1

u(i)u(i− k)

A signal u is called persistently exciting (PE) of order n if the matrix Cn
is positive definite.

Cn =













c(0) c(1) . . . c(n− 1)
c(1) c(0) . . . c(n− 2)

...

c(n− 1) c(n− 2) . . . c(0)













A signal u is persistently exciting of order n if and only if

U = lim
t→∞

1

t

t
∑

k=1

(A(q)u(k))2 > 0

for all nonzero polynomials A of degree n− 1 or less.
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Persistent Excitation - Examples

A step is PE of order 1

(q− 1)u(t) = 0

A sinusoid is PE of order 2

(q2 − 2qcosωh+ 1)u(t) = 0

White noise

PRBS

Physical meaning

Mathematical meaning
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Lack of Identifiability due to Feedback

y(t) = ay(t− 1) + bu(t− 1) + e(t), u(t) = −ky(t)

Multiply by α and add, hence

y(t) = (a+α k)y(t− 1) + (b+α )u(t− 1) + e(t)

Same I/O relation for all â and b̂ such that

â = a+α k, b̂ = b+α

• True value

a

b

    ̂ a 

    
ˆ b 

    Slope − 1 k
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Lack of Identifiability due to Feedback

Consider for example the standard feedback loop. add fig If the only

perturbation on the system is the signal d we have

Y(s) =
P(s)

1+ P(s)C(s)
d, U(s) = −

C(s)P(s)

1+ P(s)C(s)
d,

and it thus follows that Y(s) = − 1
C(s)U(s) any attempt to find a

model relating u and y will thus result in the negative inverse of the

controller transfer function. However, if d = 0 we have instead

Y(s) =
P(s)C(s)

1+ P(s)C(s)
(F(s)R(s) − N(s))

U(s) =
C(s)

1+ P(s)C(s)
(F(s)R(s) − N(s)d,

hence Y(s) = P(s)U(s) and the process model can indeed be

estimated.
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The Self-Tuning Regulator

Process   parameters

Controller
design

Estimation

Controller Process

Controller
parameters  

Reference

Input Output

Specification

Self-tuning regulator

Certainty Equivalence - Design as if the estimates were correct

(Simon)

Many control and estimation schemes
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The Self-Tuning Regulator

Estimate parameters recursively

Compute control law from estimated parameters

Apply control signal

Many different choices

Model structure

Parameterization

Criterion

A simple choice:

Design an adaptive minimum variance controller.
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Command Signal Following

Process and controller

Ay(t) = B (u(t) + v(t)) , Ru(t) = Tuc(t) − Sy(t)

Controller

u

Process

y

  

B

A

  u c

  Ru = Tu c − Sy

v

Σ

Closed loop system

y(t) =
BT

AR + BS
uc(t) +

BR

AR + BS
v(t)

u(t) =
AT

AR + BS
uc(t) −

BS

AR + BS
v(t)

Closed loop characteristic polynomial

AR + BS = Ac
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Closed loop response

y(t) =
BT

AR + BS
uc(t)

Desired response

Amym(t) = Bmuc(t)

Perfect model following

BT

AR + BS
=
BT

Ac
=
Bm

Am

Avoid cancelation of unstable process zeros :B = B+B−

Bm = B
−B ′m, Ac = AoAmB

+, R = R′B+

Hence

AR′ + B−S = AoAm = A
′
c, T = AoB

′
m
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Example

G(s) =
1

s(s+ 1)

Sampling with h = 0.5

H(q) =
b0q+ b1

q2 + a1q+ a2
=

0.1065q+ 0.0902

q2 − 1.6065q+ 0.6065

Bm(q)

Am(q)
=

bm0q

q2 + am1q+ am2
=

0.1761q

q2 − 1.3205q+ 0.4966

B+(q) = q+ b1/b0, B−(q) = b0, B ′m(q) = bm0q/b0

Choose Ao = 1

u(t) + r1u(t− 1) = t0uc(t) − s0y(t) − s1y(t− 1)
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Example
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Redesign with no Cancellation

H(q) =
b0q+ b1

q2 + a1q+ a2
=

0.1065q+ 0.0902

q2 − 1.6065q+ 0.6065

We have B+ = 1 and B− = B = b0q+ b1

Hm(q) = β
b0q+ b1

q2 + am1q+ am2
=

bm0q+ bm1
q2 + am1q+ am2

Diophantine equation

(q2 + a1q+ a2)(q+ r1) + (b0q+ b1)(s0q+ s1)

= (q2 + am1q+ am2)(q+ ao)

Control law

u(t) + r1u(t− 1) = t0uc(t) − s0y(t) − s1y(t− 1)

Bo Bernhardsson and K. J. Åström Adaptive Control



0 20 40 60 80 100

-1

0

1

0 20 40 60 80 100

-4

-2

0

2

Time

Time

uc y

u

0 100 200 300 400 500

-2

-1

0

0 100 200 300 400 500
0.0

0.1

0.2

Time

Time

â2
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Load Disturbances
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STR and Minimum Variance Control - Bjœrn Wittenmark

yt+1 + ayt = but + et+1 + cet

ut =
1

b
(ayt − cet) =

a− c

b
yt

In general A(q)ty= B(q)ut + C(q)et

ut =
a(q) − c(q)

b(q)
(yt − rt)

The self-tuning controller

yt = β (ut − θ yt) + ǫ

ut = sat
(

θ̂ (yt − rt)
)

Estimate θ by least squares for fixed β , 0.5 < β/b < ∞, B(z) stable

+ order conditions. Local stability: real part of C(z) positive for all

zeros of B(z)
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An Example

Consider a process governed by

y(t+ 1) + ay(t) = u(t) + e(t+ 1)

Assume that we would like to keep the output as close to zero as

possible in the least squares sense. Estimate parameter a by least

squares and use the control law u = ây(t). The estimate is given by

the normal equation

y(t+ 1) + ây(t) = u(t)

by least squares. The normal equation is

t−1
∑

k=1

y2(k)â(t) =
t−1
∑

k=1

(u(k) − y(k+ 1))y(k)
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An Example ...

Using recursive computations of the estimate the control algorithm

becomes

u(t) = â(t)y(t)

â(t) = â(t− 1) + K (t)(y(t) − u(t− 1) + â(t− 1)y(t− 1))

K (t) = P(t)y(t− 1)

P(t) = P(t− 1) −
P2(t− 1)y2(t− 1)

1+ y2(t− 1)P(t− 1)

Clearly a nonlinear time-varying controller. The algorithm behaves as

expected when applied to a system with the right model structure.

What happens if it is applied to the system

y(t+ 1) + ay(t) = bu(t) + e(t+ 1) + ce(t)

Does the algorithm have some general properties?
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An Example ...

Consider the system

y(t+ 1) − 0, 9y(t) = 3u(t) + e(t+ 1) − 0.3e(t)

The minimum variance controller is

u(t) = −
c− a

b
y(t) = −0.2y(t)

Control the process by a self-tuner that estimates parameters in

y(t+ 1) + ay(t) = u(t) + e(t+ 1)

and use the control algorithm u = ây(t). Notice that the model

structure is wrong!
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Example ...
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Example ...

Consider a process governed by

y(t+ 1) + ay(t) = bu(t) + e(t+ 1) + ce(t)

Estimate the parameter a in

y(t+ 1) + ay(t) = u(t)

by least squares. The normal equation is

t−1
∑

k=1

y2(k)â(t) =
t−1
∑

k=1

(u(k) − y(k+ 1))y(k)

The control law is

u(t) = â(t)y(t)
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Example ...

t−1
∑

k=1

y2(k)â(t) =
t−1
∑

k=1

(u(k) − y(k+ 1))y(k)

=
t−1
∑

k=1

(â(k)y(k) − y(k+ 1))y(k)

1

t

t−1
∑

k=1

y(k+ 1)y(k) =
1

t

t−1
∑

k=1

(

â(k) − â(t)
)

y2(k)

If y(k) is bounded in the mean square and if the estimate converges

we find that the closed loop system has the property

lim
t→∞

1

t

t−1
∑

k=1

y(k+ 1)y(k) = 0
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Example ...

If the parameters converges and the signals remain mean square

bounded the simple self tuner drives the correlation of the output

lim
t→∞

1

t

t−1
∑

k=1

y(k+ 1)y(k) = ry(1) = 0

to zero.

Compare with a controller with integral action which drives the error to

zero if the closed loop system is stable.

What does the condition ry(1) = 0 imply?
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Example ...

Consider the system

y(t+ 1) + ay(t) = bu(t) + e(t+ 1) + ce(t)

with the feedback

u(t) = −ky(t)

The closed loop system is

y(t) =
q+ c

q+ a+ bk
e(t) = e(t) +

c− a+ bk

q+ a+ bk
e(t− 1)

The condition ry(1) = 0 implies that c− a+ bk = 0 and that

ry(τ ) = 0 for all τ ,= 0.

The simple self-tuner converges to the minimum variance controller
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ASEA Novatune
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ASEA Novatune
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First Control - Gunnar Bengtsson
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Ship Steering - Clas Källström
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Ship Steering - Performance

Bo Bernhardsson and K. J. Åström Adaptive Control



Steermaster
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Summary

Adaptive control has had a turbulent history

Adaptive systems are now reasonably well understood

They are nonlinear and not trivial to analyse and design

Interesting ideas

Stability theory, passivity

Chaotic behavior

Averaging based on the assumption that parameters are slow

Lennart’s differential equations

A large field we have just given a sketch

Important issues still unresolved

There are a number of adaptive systems running in industry

Initialization, safety nets and guards

Excitation and load disturbances
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