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1 Introduction

Loop-shaping is a classical procedure for control design. In the basic course it was
denoted lead lag design. Loop-shaping was introduced during world war II and it was
used to construct single variable circuits, such as amplifiers in feedback (Bode). This
knowledge has later been transferred to other areas of automatic control, and it has
been extended to multivariable systems, i.e. systems with multiple input and output
signals.

The idea is to shape the open-loop gain with a controller in order to achieve intend-
ed properties of the closed-loop system under feedback. In the 70’ies and 80’ies ad-
vanced methods for loop-shaping based on optimization were developed. However, in
this computer exercise we will focus on basic classical loop-shaping. Frequency domain
descriptions are fundamental in control design!

We will here only consider SISO systems (single input single output), but the ideas are
also applicable to MIMO systems (multiple input multiple output).

Preparations: Chapters 7.1-7.4 in the course book (Ljung, Glad, "Control theory”).
It is also recommended to repeat Chapter 5.5 in the basic course book (Glad, Ljung,
"Reglerteknik-Grundldggande teori”).

Presentation: All problems in this exercise should be solved and be presented in
a written report. The date when it should be handed in is indicated in the course
instructions. The report should contain all relevant figures.

2 Background

Consider the control system in Figure 1.
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Figur 1: K—controller, G—system, r—reference signal, u—control signal, d—disturbance
signal, y—output signal, n—measurement noise.

The loop gain is given by L = GF, the sensitivity function S = (I + L)~! and the
complementary sensitivity function 7' = (I+L)~!L. Remember that we have S+T = I.
The control error depends on the input signals as

e=r—y=5Sr—Sd+Tn.

Since we wish to have a small control error, we obtain the following conditions

1



i) S=0 = T~I = Llarge
e~ 0= 4
it) T~0 = S~I = L small
We obviously have contradictive condtions! The case i) corresponds to reference track-
ing and disturbance attenuation while case ii) corresponds to noise attenuation (and
sensitivity to model errors, robustness). For example, if we wish to track low frequency
reference signals we have to design the loop gain to be large at low frequencies.

Apart from keeping the control error small, the control signal should not be too large
or vary too much. Since

u=F(r—y—n)
this condition implies that the control gain must not be designed too large, F' small
= L = GF small.

Stability is another important issue. The slope of the curve |L(iw)| is coupled to the
phase arg{L(iw)}. For example, L = a/s" has slope —n and phase —nz/2. In order
to keep a reasonable stability margin, |L| must not have too large slope around the
cross-over frequency w,.. Typically, |L| is designed to have slope ~ —1 at w,.

Also note that the phase margin is coupled to control performance. For example we
have resonance peaks Mg = max, |S| and My = max,, |T|
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where the phase margin PM is given in radians. For example, if we demand the reso-
nance peaks smaller than 2, the phase margin has to be larger than 30°.

Mr >

Such contradictive constraints give rise to different strategies to shaping the loop L
so that performance demands are met. They also provide limits of achievable control
performance.

3 Introduction to Control System Toolbox

In this computer exercise we will use MATLAB to shape the loop, just as we did in
the basic course. Most of the functions are in Control System Toolbox. Let us start
by defining some useful function. Recall that you get access to the MATLAB help be
typing help function name".

A transfer function
s+2

G8) = 22573

is defined in MATLAB by typing
s=tf(’s’); G=(s+2)/(s?+2s+3);

The product of two transfer functions is obtained by

G12=G1xG2



For a system with 2 inputs and 2 outputs, the closed-loop transfer matrix is obtained
with
S=feedback(eye(2),GxF) ; T=feedback(G*F,eye(2))

For a SISO system this can be written

S=1/(1+GxF) ; T=G*F/(1+G*F)

For numerical reasons it is very important to use the function minreal, for example
minreal (T). This creates an equivalent system where all cancelling pole/zero pair or
non minimal state dynamics are eliminated.

The bode diagram for G is plotted by typing
bode(G) or bode(G,{wmin,wmax})
Amplitude and phase at a given frequency are obtained by
[m,pl=bode(G,w)
Phase margin, amplitude margin and corresponding frequencies are obtained by

[Gm,Pm,wp,wc]=margin (G*F)

To simulate a step response in the control signal, use the function
step(G) or step(G,tfinal)
In the same way, to simulate a step response in the reference signal, we type

step(T)

4 Exercises

4.1 Basics

Consider a system which can be modelled by the transfer function

_ 3(=s+1)
-~ (5s+1)(10s + 1)

Exercise 4.1.1. Use the procedure introduced in the basic course to construct a lead
lag controller which eliminates the static control error for a step response in the ref-
erence signal. The phase margin should be 30° at the cross-over frequency w. = 0.4
rad/s.

G(s)




Exercise 4.1.2. Determine the bandwidth of the closed-loop system and the resonance
peak Myp. Also, determine the rise time and the overshoot for step changes in the
reference when the controller designed in 4.1.1. is used.

Exercise 4.1.3. Modify the controller in 4.1.1. such that the phase margin increases
to 50° while the cross-over frequency is unchanged. For the corresponding closed-loop
system, determine the bandwidth and resonance peak. Also, determine the rise time
and the overshoot of the step response.

4.2 Disturbance attenuation

Now we will construct a controller which both tracks the reference and attenuates
disturbances. The block diagram of the control system is given in Figure 2. We assume
that the signals have been scaled such that |d| < 1, |u| < 1 and |e|] < 1 where e = r—y.

The exercise is about designing F,. and F, in Figure 2 such that:

e The rise time for a step change in the reference signal less than 0.2 s and the
overshoot is less than 10%.

e For a step in the disturbance, we have |y(t)| < 1Vt and |y(¢)| < 0.1 for t > 0.5 s.

e Since the signals are scaled the control signal obeys |u(t)| < 1 V.

The transfer functions have been estimated to

20
Gls) = Gr)((E2+5+1D)
Gd(s) - 3:?1



Figur 2: F,—prefilter, F\,~feedback controller, G-system, G 4—disturbance dynamics, r—
reference signal, u—control signal, d—-disturbance signal, y—-measurement signal.

Exercise 4.2.1. For which frequencies is control action needed? Control is needed at
least at frequencies where |G4(jw)| > 1 in order for disturbances to be attenuated.
Therefore the cross-over frequency must be large enough. First, try to design F, such
that L(s) = w./s and plot the closed-loop transfer function from d to y and the
corresponding step response. (A simple way to find L = w./s is to let F, = G 'w,/s.
However, this controller is not proper. A procedure to fix this is to “add” a number of
poles in the controller such that it becomes proper. How should these poles be chosen?)

A loop gain of slope -1 at all frequencies gives in our case poor disturbance attenuation.
To understand the reason for this, note that the output is given by

y=SGqd = (1+ L) *Gyd.

Provided the signals have been scaled we want |(1 + L)™'G4| < 1 for all w. For fre-
quencies where |G4| > 1 this approximately implies |L| > |Gq4| or |F,| > |G™1G4|. Most
often we also want integral action and as a starting point we can choose

F=" -’_SWIG‘IGd, (1)

where w; determines the frequency range of efficient integral action. We see that if
G4 ~ 1, the controller should contain the inverse of the system. On the other hand if
G4 # 1 the controller should be designed in some other fashion. Especially, we observe
that if the disturbance is on the input side to the system we have G, = G and then F
should be chosen as a PI controller according to (1).

Note that the controller (1) cannot be used if it is not proper, causal and stable. To
ensure these properties, approximations of (1) may be necessary.

Exercise 4.2.2. Let us now reconstruct £, according to the instructions above. We will
start with the disturbance attenuation. In a second step, adjustments can be made on



F, to obtain the desired reference tracking properties. Start by choosing F), according
to (1). Try different approximations of the product G=!(s)G4(s) and choose wy large
enough so that step disturbances are attenuated according to the specifications.

Exercise 4.2.3. To fulfil the reference tracking specifications, we can combine lead
lag control and prefiltering of the reference signal. First, try to add lead action to F,
to reduce the overshoot. Then it can be necessary to add prefilter action to fulfil all
specifications. Note that F, should be as simple as possible (why?). Also, remember to
check the size of the control signal (u = F, F,.Sr — F,G45d)! Typically a low pass filter
is chosen, for example

Exercise 4.2.4. Finally, check that all specifications are fulfilled. Plot the sensitivity
and complementary sensitivity functions.
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Goals & requirements

It is important to read this document and answer the preparation tasks, 1.1.1,
1.2.1, and 1.3.1 before the exercise. The preparation tasks should be included
in the report.

The main goal of this lab is to get a feeling for how H, control design can be
used to obtain desired specifications on sensitivity and robustness. To perform
this lab basic knowledge in control theory, corresponding to the basic control
course, is required. It can be a good idea to look back on the following things:

e Sensitivity and Complementary sensitivity function
e Robustness and model errors

e How poles and zeros affect the dynamics of the system and how it is
reflected in the Bode diagram.

1 Introduction

In H, control design the sensitivity and complementary sensitivity function
are shaped to meet certain desired specifications. To be able to form these
specifications this section will begin with a brief summary of some important
basic theory followed by theory more specific for the design method.

w
rt?e F u G @* y

Figure 1: Block diagram of the feedback system used in this lab

The system used in the entire lab has the structure depicted in Figure 1. The
signals indicated in the figure are:

r: Reference value

e: Control error

u: Control signal

w: Disturbance on the output

y: Output

1.1 Sensitivity function and reduction of disturbances

The sensitivity function, denoted S, is the transfer function from the disturbance
to the output, see Equation (1). Note that the equation only describes the



relation between the disturbance and the output. The reference is therefore

assumed to be zero.
y=Sw, S=(1+GF)™* (1)

By making the amplification of the sensitivity function small, the effects of
disturbances on the output can be reduced. As this lab will show it is not
possible to make it arbitrary small for all frequencies. This can easily be realized
by looking at the amplification of the controller required to make the sensitivity
very small.

1.1.1 Preparation task 1

Use the block diagram in Figure 1 to show that the transfer function from the
disturbance (w) to the output (y) satisfies Equation (1).

1.2 Complementary sensitivity and robustness

The complementary sensitivity function T given by

T=(1+GF)'GF 2)

can be used to prove robustness to model errors. For that a new system with
model uncertainty Ag is introduced. The new system is depicted in Figure 2.

T_?LF_L.G

Figure 2: Block diagram of the feedback system with model error
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The system in Figure 2 can be rewritten as the system depicted in Figure 3.

With the small gain theorem (lagforstarkningssatsen), see course book [1] or
[2], closed loop stability can be guaranteed if Ag and T both are stable and
condition (3) is satisfied.

1
T(iw)| < ——, Ww 3
[T6)] < (g 3)
One important remark about the above result is that the small gain theorem
is conservative. The condition on T is therefore sufficient but not necessary for

stability.



Figure 3: Block diagram of the feedback system with model error on the form
used in the small gain theorem

1.2.1 Preparation task 2

Show that the systems in Figure 2 and Figure 3 are equivalent if the reference
signal is zero.

1.3 H, control design

In H. control design the three functions S, T and G, are shaped to meet
desired performance. The first two have already been discussed. Here Gy
denotes the transfer function from the disturbance to the control signal, see
Equation (4) (where it is assumed r = 0).

u=Guw, Guy=—-(1+FG)'F=-FS (4)

It is desirable to make the magnitude of S, T and G, small. That is unfortu-
nately not possible because they are related to each other. To deal with that,
the weights (transfer functions) Wg, Wy and Wy are introduced. They decide
how much emphasis to put on minimizing each closed loop transfer function.

After choosing the weights the following problem is solved:

Find F such that
WsS
WrT <y
Wy FS

Try to make 7y as small as possible.




The above constraint can be rewritten as
IS (iw)] VW5 H(iw)], Vw

<
ITGw)] < ~A[Wrl(iw)], Yo (5)
|F(iw)S(iw)| < ~[W5t(iw)], Yw

To compute the controller that gives the smallest value of v is far from trivial,
especially for higher order systems and weights. It is therefore not done by hand
in this lab. The computations are instead done numerically in the design tool.

1.3.1 Preparation task 3

Use the block diagram in Figure 1 to show that the transfer function from the
disturbance (w) to the control signal (u) satisfies Equation (4).




2 Software

This lab is run in MATLAB. The files needed can be found on the course home-
page. A graphical design tool will be used to design the weights and compute
the resulting controller. There is also a Simulink model used for simulations.
How to use the design tool and do the simulations will be described in this
section.

2.1 H, graphical design tool

Before the design tool can be opened a transfer function for the system must be
defined. The model has to be strictly stable and proper, which means that is
has at least as many poles as zeros and all poles are in the left half plane. An
example sequence of how the tool is started can be seen below.

F:tf(’s’)}; G=ledx(s+2)/(s+3)/(s+100)"2; Hinf(G); j

The tool should now open and look like in Figure 4.

There are three Bode plots, (1a), (1b), (1¢). They show S, T, Gy, and the
inverse of their respective weights.

To the right of each Bode there are lists of poles and zeros and some but-
tons, (4) in Figure 4. Notice that the poles corresponds to zeros in the inverse
of the weight that is plotted and the opposite for the zeros.

The weights can be changed in two ways. One is to add and remove poles
or zeros with the corresponding buttons. The other is to open a graphical edi-
tor for the poles and zero. It is done by clicking the ”Edit Pole-Zero diagram”
button. A new window, seen in Figure 5, will open. In the new window different
tools can be chosen from the toolbar, (1) in Figure 5.

The tools from left to right are:

Add real pole: Add real pole by clicking in the diagram.

Add complex pole pair: Add pole pair by clicking in the diagram.

Add real zero: See Add real pole.

Add complex zero pair: See Add complex pole pair.

Remove: Removes pole or zero by clicking on it.

Move: Move pole or zero by clicking on it and holding the mouse button down
while moving the cursor.

The weights are on the form (6).
(s —z(1))(s — 2(2))...(s — z(m)) (©)
(s =p(1))(s = p(2))-.-(s — p(n))

To edit the constant k, just type the new value in the gain input field (3) in
Figure 4 and press enter.

W(s)=k

The weights on T and G, can be disabled. Just press the disable button
(5) in Figure 4. It can be enabled again by pressing the enable button that
replaces the disable button.



The magnitude scale is automatically fitted to the weight but the frequency
scale has to be set by the user. There are two ways of doing it. One is to enter a
maximum and minimum value in the fields (2a) and (2b) in Figure 4 and press
enter. The other option is to use the ”auto-set frequency” option in the plots
menu (6) in Figure 4.

To compute the controller from the weights simply use the ”compute controller”
option in the controller menu, (6) in Figure 4. The controller will then be com-
puted and the plots updated. Some information about the controller can be
displayed in MATLAB command window.

The controller can then finally be exported to workspace with the ”export con-
troller” option in the controller menu (6) in Figure 4. It will be saved as F
in workspace. If there already exists an varable with that name it will be over
saved.

Figure 4: The Hy, graphical design tool

2.2 Simulations

The Simulink model named servol.mdl is used to simulate the system in Fig-
ure 1. A step is used as reference and disturbances can be added as band-limited
white noise and a sinusoid.

To run the simulation the short macro, found on the homepage, can be
used. In the beginning of the file macro.m there are some parameters that can
be changed to customize the simulation. The parameters are described in the
m-file.



f .t Ws Pole-Zero-diagram

Figure 5: The Pole zero editor



To run the macro, the controller and system must first be saved as transfer
functions named Fsim and Gsim in workspace. The macro runs the simula-
tion and plots the results in a new figure.

Below is an example of a sequence that simulates the system. The system and
controller are assumed to be defined as transfer functions in workspace with the
names F' and G.

Fsim=F; Gsim=G;
%FEdit parameters in macro.m
macro

Now the simulation should start and plot the results when ready. If the simula-
tion takes very long time it can be stopped by pressing Ctrl-C in the MATLAB
command window.




3 Exercises

The system to control in this lab is an electrical device powered by the 50H z
(1007 rad/s) net. A proposed model of the system is given by transfer function

(6)-
10%(s + 2) )

Gl) = T3y w1007

Bode Diagram
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Figure 6: Bode diagram of the system in Equation (7)

The closed loop system is considered to be fast enough, when it comes to follow-
ing the reference, without a controller, but not the suppression of disturbances.
A controller will therefore be designed focusing on the disturbances.

3.1 Suppression of disturbances

i. The aim is to damp the 50H z disturbances. Propose a suitable weight,
Ws, by drawing it in the empty Bode diagram in Figure 7. Also draw the
expected resulting sensitivity function. Keep in mind that the sensitivity
function can’t be small for all frequencies.

ii. Now try to design the weight in the software. In this part only the sen-
sitivity is considered. The weights on T" and G, can therefore be dis-
abled. When the sensitivity function is satisfactory, export the controller
to workspace and run the simulation with a 50H z sinusoidal disturbance



Bode Diagram
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Figure 7: Draw Wg and S here

like described in section 2.2. Use the parameters in Table 1. Fill out Ta-
ble 2 with the results from the simulation.

Hint: Placing poles in s = —e+£1i1/w? — €2), where € is small, gives a peak
at w rad/s

Parameter Value
u-max inf
sin_dist_freq 1007
stn._dist_amp 1
white_noise.amp 0
step_size 0
stm_time 10

Table 1: Parameters to use in macro.m for simulation

Signal Amplitude
disturbance (w)
output (y)
control signal (u)

Table 2: Results from simulation in Exercise 3.1 ii.

How much is the disturbance damped on the output? ..................
(The rate between the disturbance amplitude and the output oscillations)
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3.2

Approximately what amplification is required for a P-controller to get the
same rate and what are the advantages/disadvantages of such a controller?

Hint: If |[FG| >> 1, |S| = |FG|7*.

Robustness

Unfortunately the model (7) is not accurate. It was obtained by sending sinu-
soids, with different frequency, into the system and measure the output ampli-
tude. By ignoring the phase-shift some important dynamics was not detected.
The true system is given by Equation (8).

i

ii.

iii.

. 10%s+2) (s—1)
" (s+3)(s+100)2 (s+1)

Go(s) = G(s)(1 + Ag(s)) (8)
What influences will this error have on the system behavior, and will they
be a limiting factor on achievable control performance?

Simulate the system with the controller designed in the previous exercise
and the system (8). Run the simulation with the same parameters as be-
fore.

(The simulation time might need to be increased to see the results)

Comment on the results from the simulations:

What is the condition on T required to guarantee stability for the new
system, using the small gain theorem?

11



Is the condition fulfilled? ...............
(Look at the Bode diagram in the graphical design tool.)

iv. Use the software to design a new controller that suppresses 50H z distur-
bances but is stable with G,. Keep the Wg used earlier but enable the
weight on T. Then try to find a weight on T that makes the closed loop
system stable and still has good suppression of the disturbance. Export
the controller to workspace and run the simulation.

Remark: The controller should be designed for G in Equation (7) but sim-
ulated with G, in Equation (8).

Compare the results to Table 2.

3.3 The use of control signal

Enable the weight on G, and try to reduce the control signal. Try to reduce
the amplitude to half of the one used in Exercise 3.2 iv. How is the amplitude
of the output affected?

References

[1] Torkel Glad & Lennart Ljung: Control theory - Multivariable and Nonlinear
Methods, Taylor & Francis (2000)

[2] Torkel Glad & Lennart Ljung: Reglerteori - Flervariabla och olinjdra
metoder, Studentlitteratur (2007)
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1 Introduction

In this computer exercise we will investigate properties of multivariable systems. The
application is a model of a four-tank-process. In particular we will consider pairings
between different input and output signals and non-minimum phase dynamics. The
pairings are analyzed using RGA and we will investigate their influence in decentralized
PI control.

Preparations: Chapters 3.3, 3.5, 6.5, 7.3-7.5, 7.7 and 8.3 in Glad, T. and Ljung, L.:
Control theory—multivariable and nonlinear methods.

Presentation: All problems in this exercise should be solved and be presented in
a written report. The date when it should be handed in is indicated in the course
instructions. The report should contain all relevant figures.

2 Theoretical overview

This section contains a short overview of basic theory for multivariable systems. The
content is based on the course book.

2.1 Poles and zeros

As for SISO systms we can define poles and zeros for a linear MIMO system with
transfer matrix G(s).

The poles of G(s) are defined as the eigenvalues of the system matrix A in a minimal
state space realization of the system and they are calculated as the roots of the pole
polynomial, det(s] — A). The pole polynomial can also be obtained by calculating the
least common denominator of all subdeterminants of G(s).

It is more difficult to extend the definition of zeros from the SISO case to the MIMO
case. The most common definition of a zero of the system is a value of s where the
transfer matrix G(s) looses rank. For the special case of square transfer matrices, the
zeros are given by the roots of det G(s) = 0.

2.2 Singular values, directions and H,, norms

The singular values o; of a matrix A are defined as o; = Vi, where \; are the eigen-
values of the matrix A*A. The largest singular value of A is denoted 7(A), and the
smallest as g(A). If y = Az, it follows from the singular value definition that

o(4) < % <3(A)

where the relation between the norm of y and the norm of z, |y|/|z|, can be interpreted
as the gain of the matrix A. If z is parallel with the eigenvector corresponding to
the largest eigenvalue of ATA then we have |y| = 7(A)|z|, and if z is parallel to the

1



eigenvector corresponding to the smallest then we obtain |y| = g(A)|z|. This way we
can define directions corresponding to the largest and smallest singular value for A
respectively.

For a linear stable multivariable system with transfer matrix G(s) we have
Y (iw) = G(iw)U (iw)

where Y (s) and U(s) are the Laplace transforms of the system’s output and input
signals. According to the definition of singular values we therefore have

Introducing
|G (iw)] :=7(G(iw))
it holds
Y (iw)| < |G(w)||U (iw)].
This notation is analogous to the SISO case where the norm is interpreted as the
absolute value of G(iw), and the inequality above turns to an equality.

To understand the inequalities in the MIMO case we can choose the input parallel to
the direction corresponding to the largest or smallest singular values of G(iw). The
directions decide the "mix” of the input signal components that results in the largest
and smallest gain of the system respectively.

The largest gain of the multivariable system G(iw) is dentoted |G|, Which is given
by

G e = max |G
|Gl|oo is called the Hy, norm of G. For output signal y(¢) and input signal u(¢) it holds

11l < G loolull-

Therefore the H, norm can be interpreted as the time domain gain of the system. It
holds

sup 4 = 61

which can be seen as the definition of the H,, norm for G.

2.3 Decentralized control

A fundamental problem in multivariable control is the pairings between the inputs and
outputs. This means that if one input changes there is generally a change in all outputs.
A measure of the strength of the pairings in a multivariable system, G(s), is given by
the Relative Gain Array, RGA of the transfer matrix G. It is defined by

RGA(G(iw)) == G(iw). * [G™ (iw)]”

where “.%” denotes element wise multiplication. We can use RGA to determine which
input and output that are suitable to pair in a decentralized controller. Two rules of
thumb:



Tank 3 Tank 4

Tank 1 Tank 2
Pump 1 n Yo Pump 2

Uy S - U2

LR "

Figur 1: The four-tank process

1. Find a pairing such that diagonal elements of RGA(G(iw,)) are as close to 1 as
possible, where w, is the intended cross-over frequency.

2. Avoid pairings which correspond to negative elements in RGA(G(0)).

3 Exercises

In this computer exercise linear models of a four-tank process will be investigated. The
system is shown schematically in Figure 1. The input signals are the voltages of the
pumps, u; and uy. The output signals that we want to control are the levels in the
lower tanks, y; and y,. Connected to each pump there is a valve that divides the water
to the upper and lower tanks. A linear multivariable model with 2 inputs and 2 outputs
is given by Y (s) = G(s)U(s) where

=[] o= [53] = co-[50 4]

Depending on the settings of the valves we obtain different G(s). In this computer
exercise two different valve settings wil be investigated: in the first, most of the water
will go directly to the lower tanks and G(s) is minimum phase; in the second, most of
the water go to the upper tanks and G(s) will be non-minimum phase.

3



3.1 Poles, zeros and RGA

A linear state space model for the four-tank process is generated by the Matlab func-
tions minphase and nonminphase. To put the minimum phase model in the variable
sysmp we write

sysmp = minphase

The follwing Matlab functions can be used in this exercise. The poles of the system
sys are obtained with
pole(sys)

and its zeros with
tzero(sys)

The system should be given as a (minimal) state space description when these func-
tions are used. (Otherwise numerical problems can appear in Matlab.)

The singular values for a system are calculated with sigma. To extract system matrices
and transfer functions the functions ssdata and tfdata are used, respectively. The
singular value decomposition are calculated using svd. To calculate step responses for
linear systems the function step can be used. The Bode diagram of a system is plotted
using bode. Note that dB scale is used. Use the Matlab Help to learn more about the
functions.

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.1.1. Calculate the transfer matrix G(s). Investigate each element of the
matrix (Hint: G(1,1) extracts element (1,1)). Calculate the poles and zeros of the
elements.

Exercise 3.1.2. Calculate the poles and zeros of the multivariable system. Do these
imply any constraint on the achievable control performance?

Exercise 3.1.3. Investigate the largest and smallest singular values for the system at
different frequencies. Calculate the H,, norm of the system.

Exercise 3.1.4. Investigate the RGA of the system at frequency 0. What conclusions
can we draw about the possibility of using decentralized control?

4
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Figur 2: Control.

Exercise 3.1.5. Plot the step response for one input at the time. Investigate the
outputs: is the system coupled? Is this in line with the properties of RGA?

Now solve the above problems above for the non-minimum phase case.

Exercise 3.1.6. Describe the most important differences between the two cases and
discuss how it affects the control performance.

3.2 Decentralized control

We will now investigate control of the four-tank process as illustrated in Figure 2, where
both the process G(s) and the controller F(s) are 2 x 2 matrices of transfer functions.
The simplest way to control a system is to use decentralized control. This means that
one input is paired with one output, which is controlled with a one-dimensional con-
troller. An example is depicted in Figure 3, where output y; is controlled with the input
uy through the controller fi(s). Similarly, the output ys is controlled with the input s
through fs(s). Here y; is paired with u; and y» is paired with u,. This corresponds to

Figure 2 with
o =" 1)

The other way around, if ¥, is paired with u, and y, is paired with u;, then F(s) is

given by To A
Fs) = [fz(s) 0 }

5
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Figur 3: Decentralized control.

In the first case, the controllers fi(s) and f»(s) are designed using single-varible con-
trol design with the transfer functions between u; and y; and between uy and y,. A
procedure for one-dimensional control design was investigated in the computer exercise
on loop-shaping. Here we will design PI controllers

1 ,
B = (14 ) a=12

2
such that the intended phase margin ¢,, and cross-over frequency w, are obtained. The
loop gain is given by L = G'F. Therefore we wish to shape l;; and Iy in such a way
that given specifications are fulfilled.

Let us now investigate the case where y; is to be controlled with u;. Denote the intended
phase margin and cross-over frequency by ,, and w, respectively. From [;; we see that
K, and Tj, are given by the following equations:

|11 (iwe) fi1 (iwe)| = 1 (1)
arg g11(iw.) + arg f1(iw,) — om = —7 (2)

Note that Equation (2) is equivalent to
arg g11 (iwe) + arctan(w,T3,) — 7/2 — @ = —7

where arg gi;(iw.) can be obtained from the Bode diagram of gi1(s). This gives Tj, .
Then we can draw the Bode diagram for the loop gain

i(s) = gui(s) (1 " s;)

Equation (1) now gives



where |{11(iw.)| is obtained from the Bode diagram of I1;(s). Control design for other
input/output pairings is performed similarly. Apart from Matlab functions already
mentioned, the following ones can help you: tf, zoom, append, inv and feedback.

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.2.1. Design a decentralized controller by pairing inputs and outputs ac-
cording to the RGA analysis. The intended phase margin is ¢,, = 7/3 and the cross-
over frequency w, is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the
non-minimum phase case. (To make sure that the problem is correctly solved, investi-
gate the Bode diagram of L.)

Exercise 3.2.2. Calculate the singular values of the sensitivity function
S(s)=(I+G(s)F(s))!
and the complementary sensitivity function
T(s) = (I +G(s)F(s)) ' G(s)F(s)

Is the design good with respect to sensitivity and robustness?

Exercise 3.2.3. Simulate the closed-loop system in Simulink by typing closedloop.
A Simulink window will appear where the block diagram is shown. Make sure that
the variables F and G in the Matlab work-space contain the controller and the process
respectively. Go to the Simulation meny and click Start. On the screen the unit step
responses from the references to the outputs y;(t) (at t = 100) and yo(¢) (at ¢ = 500)
are plotted together with the inputs. The time instant of the steps can be modified by
clicking on the step blocks and changing the Step time. The total simulation time can
be modified by changing the Stop time in the menu Simulation/Parameters. Simulation
data is saved in the variable simout in the Matlab workspace. Is the control good? Are
the outputs coupled?

Now solve the above problems for the non-minimum phase case.

Exercise 3.2.4. Describe the most important differences between the two cases.
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1 Introduction

The purpose of this computer exercise is to investigate different procedures for multi-
varible control design. The process is the same as in the computer exercise on multivari-
able systems, i.e. the four-tank process. First, we will investigate static and dynamic
decoupling. The control performance will be evaluated. Then, the design will be robus-
tified using a method proposed by Glover and McFarlane.

Preparation: Chapters 8.3 and 10.5 in Glad, T. and Ljung, L.: Control theory—
multivariable and nonlinear methods.

Presentation: All problems in this exercise should be solved and be presented in
a written report. The date when it should be handed in is indicated in the course
instructions. The report should contain all relevant figures.

2 Theoretical overview

This section provides the theory that you will need to solve the problems. It is based
on the course book.

2.1 Decentralized control and decoupling

A fundamental problem in multivariable control is that the input and output signals
are coupled. This means that if one input is changed then, in general, all outputs are
affected. A measure of the strength of the coupling in a multivariable system (G(s)) is
given by the Relative Gain Array, RGA of the transfer matrix G, defined as:

RGA(G(iw)) i= G(iw). * |G (iw)]"

where “.x” denotes element wise multiplication. In decentralized control the RGA can
help us to determine which inputs and outputs that are suitable to pair. Two rules of
thumb:

1. Find a pairing such that the diagonal elements in RGA(G(iw,)) are as close to 1
as possible, where w, is the intended cross-over frequency.

2. Avoid pairings that correspond to negative elements in RGA(G(0)).

If it is not possible to find a suitable pairing of inputs and outputs, one can try to
make a better system using decoupling. Consider the following example: one output is
a function of the difference of two inputs, while another output depends on the sum of
these two inputs. In this case, it is suitable to introduce two new inputs which denote
the sum and the difference respectively of the two original inputs. This is the main
idea in decoupling. Generally, decoupling is performed in the following way. Introduce
the new variables § = Wy and @ = W; 'u, so that the transfer function from @ to §
becomes

G(s) = Wa(s)G(s)Wi(s),



where we try to design G as diagonal as possible. Typically, we let Wy, = I. The idea is
to find a G which is more suitable for decentralized control than the original system G.
In general, a completely diagonal G is not realizable. However, we can try to design G
to be as decoupled as possible in a certain frequency range with the dynamical transfer
matrices Wi (s) and Wa(s). Alternatively, we can decouple the system for one frequency,
e.g. w=0 or w = w,, with constant matrices W; and Wj.

2.2 Glover-McFarlane robust loop-shaping

The decentralized control can be robustified using the method proposed by Glover och
McFarlane. It is described in Chapter 10.5 in the course book. A summary of the design
procedure, step by step, is given below.

1. Start by pairing the input and output signals in such a way that the system
becomes as diagonal as possible. A useful mathematical tool is RGA (relative
gain array).

2. Design an initial controller using pre-compensation W; and post-compensation
Ws. To start with, we can typically choose Wy = I and W; = Wy Fy;qy where
W4, decouples the system at a suitable frequency (i.e. w = 0 or the intended w,)
and Fqy(s) is a diagonal lead/lag controller designed using classical loop-shaping
(c.f. computer exercises 1 and 2).

3. Robust stabilization. Design the Glover-McFarlane controller F, for the system
G, = WoGW1. If v > 4 | redesign Wi.

4. The final controller is F(s) = W1 F,Ws.

3 Exercises

In this computer exercise the four-tank process will be investigated. Please recall the
Matlab functions introduced in the exercise on multivariable systems.

NB: numerical problems in Matlab can occur if you work with systems as transfer func-
tions (tf objects in Matlab). It is therefore important that you instead work with state
space representations (ss). When performing multiplication and division of systems, it
is highly recommended to use the function minreal, which creates an equivalent sys-
tem where all cancelling pole/zero pairs or non minimal state dynamics are eliminated.
Numerical properties can depend on the Matlab version that you use.

3.1 Static decoupling
Static decoupling is obtained by choosing Wa(s) = I and Wi (s) = G~'(0). This implies
that G(s) = G(s)G~*(0) is decoupled at s = 0.

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.



Exercise 3.1.1. Calculate the static decoupling for the system and plot the Bode
diagrams of G(s) for verification.

Exercise 3.1.2. Design a diagonal controller F(s) for G(s). Design the controllers
fi(s) as PI controllers. The intended phase margin is ¢,, = 7/3. The intended cross-
over frequency w, is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the
non-minimum phase case.

The controller is now given by
F(s) =G Y(0)F(s)
Exercise 3.1.3. Calculate the singular values of the sensitivity function
S(s)=(I+G(s)F(s))7!
and the complementary sensitivity function
T(s) = (I + G(s)F(5)) "' G(s) F(s)

Is the design good with respect to sensitivity and robustness?

Exercise 3.1.4. Simulate the closed-loop system in Simulink by typing closedloop.
A Simulink window will appear where the block diagram is shown. Make sure that
the variables F and G in the Matlab work-space contain the controller and the process
respectively. Go to the Simulation meny and click Start. On the screen the unit step
responses from the references to the outputs y;(¢) (at t = 100) and y»(¢) (at t = 500)
are plotted together with the inputs. The time instant of the steps can be modified by
clicking on the step blocks and changing the Step time. The total simulation time can
be modified by changing the Stop time in the menu Simulation/Parameters. Simulation
data is saved in the variable simout in the Matlab workspace. Is the control good? Are
the outputs coupled?

Now perform the exercises above for the non-minimum phase case.

Exercise 3.1.5. Describe the most important differences between the two cases.



3.2 Dynamical decoupling

Dynamical decoupling can be obtained for example by choosing Wa(s) = I and Wi (s)
in such a way that G(s) = G(s)Wi(s) is a diagonal matrix. The conditions for G(s) to
be diagonal are the following:

g11(s)wiz(s) + gra(s)waz(s) =0
ga1(s)wn(s) + gaz(s)wai(s) =0

where w;;(s) denote the elements of the matrix W(s). Since there are four unknowns

and and two equations we have additional degrees of freedom. A suitable procedure is

to let the diagonal elements of W (s) be equal to one if the RGA of G(s) indicates the

pairings (u1,y:) and (ug,y2). Accordingly, for other pairings it is suitable to set the
other two elements equal to one. For the case wi1(s) = wae(s) = 1, we have

wi2(8) = —g12(5)/g11(s)

w1 (8) = —g21(5)/ga2(5)
Divisions with ss object is not possible in Matlab. After the divisions have been per-
formed, we can return to state space descriptions using the function ss. (Notice that

analytically, G(s) is diagonal. However, numerically we can have off diagonal elements
of size 1071%, which can cause problems if we work with tf objects in Matlab).

If, by some reason, the static gain of G(s) happens to be negative, this can be modified
by changing signs of Wi (s). If Wi(s) becomes non-proper (for example if it contains
derivations), we can still realize the dynamical decoupling for frequencies up to approx-
imately 10 times the intended cross-over frequency w, using the following modification
10w,

Wils) = W) =g,

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.2.1. Calculate a dynamical decoupling W (s) for the system and plot the
Bode diagrams of G(s) for verification.

Exercise 3.2.2. Design a controller F(s) for G(s). Design the controllers f;(s) as PI
controllers so that we have phase margin ¢,, = 7/3. The intended cross-over frequency
w, i 0.1 rad/s for the minimum phase case and 0.02 rad/s for the non-minimum phase

case.



Exercise 3.2.3. Calculate the singular values of the sensitivity function
S(s) = +G(s)F(s)"
and the complementary sensitivity function
T(s) = (I +G(s)F(s)) ' G(s)F(s)

Is the design good with respect to sensitivity and robustness?

Exercise 3.2.4. Simulate the closed-loop system in Simulink. Is the control good? Are
the outputs coupled?

Now solve the above problems for the non-minimum phase case.

Exercise 3.2.5. Describe the most important differences between the two cases.

Exercise 3.2.6. Which type of decoupling is the best for the minimum phase sys-
tem and the non-minimum phase system respectively? What are the advantages and
disadvantages of the static and dynamical decoupled designs?

3.3 Glover-McFarlane robust loop-shaping

In the above exercises we combined static and dynamical decoupling with decentralized
PI control. In this exercise we will continue with the design that showed to be best for
each of the two cases. Alternatively, we could start all over as described above in 2.2,
but we will not do that. The reason is that the Glover-McFarlane method works well
for reasonably well-tuned nominal controllers.

Therefore assume that we have a nominal loop gain
Lo(s) = G(s)Wi(s)F(s)

obtained in the exercises above. The Glover-McFarlane method adds a link F,(s) to
this loop gain so that the final controller becomes

F(s) = Wi(s)F(s)F,(s)

)



In Matlab this link is calculated with the function
[Fr,gam] = rloop(LO,alpha)

A suitable choice for alpha is 1.1.

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.3.1. Calculate L, corresponding to the best previous design procedure and
plot the Bode diagrams to verify that Ly has the intended cross-over frequency w. and
that it is reasonably decoupled at w,. For the minimum phase case, w, is 0.1 rad/s and
for the non-minimum phase case it is 0.02 rad/s.

Exercise 3.3.2. Calculate the Glover-McFarlane controller for Ly. Are you satisfied
with the v that you have obtained?

The controller is now given by
F(s) = Wi(s)F(s)F:(s)
Exercise 3.3.3. Calculate the singular values of the sensitivity function
S(s) = (I +G(s)F(s))™!
and the complementary sensitivity function
T(s) = (I+G(s)F(s)"'G(s)F(s)

Describe the differences between the robust design and the nominal design in terms
of the sensitivity functions. Is the robust design better with respect to sensitivity and
robustness?

Exercise 3.3.4. Simulate the closed-loop system in Simulink. Compare with the re-
sult that you obtained simulating the nominal design. What are the differences and
similarities?



Now solve the above problems for the non-minimum phase case.

Exercise 3.3.5. Describe the most important differences between the two cases.
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Introduction

The purpose of this computer exercise is get a hands-on experience with Model Predic-
tive Control — MPC, and to get a feeling for how the various MPC parameters affect
performance and stability.

Preparation: Chapter 16 in “Glad, T. och Ljung, L.: Reglerteori-flervariabla och olin-
jara metoder” and copies of slides from Lecture 13. Read through this booklet before
going to the computer lab!

1 Brief Introduction to MPC

The basic idea in MPC is to use the control input u to optimize the future response
of the system, given information about the current state. A finite horizon is usually
considered for the future and the objective function is typically quadratic in the states
and in the control inputs. If the state of the system can not be measured, one needs
an observer to estimate the state. A key feature is that constraints on states, inputs
and outputs can be considered in the optimization, i.e., using constrained optimization
methods.

In MPC the input u is optimized over the whole horizon considered, but only the opti-
mal value obtained for the current time is actually implemented. Then the the system
is allowed to evolve one sample, new measurements are collected and the optimization
is repeated. With a fixed length of the horizon, the horizon extends one sample further
at each new sample. Because of this, MPC is often termed moving horizon control.

All computations in MPC are based on a discrete time representation of the system
dynamics. On state space form the model is

Tpy1 = Az + Buy (1)

e = Czy, (2)

where 1 time step corresponds to the sample time T'. There is never a direct term D
from input to output in MPC models. This follows from the fact that, at a given sample
k, the output is already given and can hence not be affected by the present input uy
which is to be calculated by the optimizer.

A general MPC formulation is
min f(z,u)

with the objective function f(z,u) =

Np—1
Y (@ Tres) Q@i Tresa) H (Ui thres) Qu(ti—thres )|+ (TN, —Tresnp) " S (TN ~Tres )

3)



and subject to the equality and inequality constraints

To = given (4)
Umin < Ui < Umnag, 1= 07 NP -1 (5)
Ymin < Hxi < Ymaz> 1= 1) NP (6)

in which ¢ = 0 corresponds to the present time (sample). Note that the same horizon
is used for both inputs and outputs in this formulation. However, a penalty is imposed
on the first state zy, following the optimization horizon. This plays a similar role to a
longer horizon for the output than the input, as used in many MPC formulations. Also
note that output errors (y — y,s) are easily included by letting Q, = C7Q,C where
C is the mapping from states to outputs in the state space model. The references for
the states can then be obtained e.g., from z,.; = pinv(C)y,.; where pinv denotes the
pseudoinverse.

The free variable considered in the optimization is the input vector u of length nu- Np
where n, is the number of inputs and Np is the number of samples in the considered
horizon. The optimization problem is to be solved at every sample, and hence one needs
efficient solvers for the problem.

The MPC problem as formulated above can be recast as a Quadratic Program (QP) for
which highly robust and efficient solvers exist. The general QP problem is formulated

as
minu’ Hu +hTu; st. Lu<b (7)

in which the objective function is square (+linear term) and the constraint is a linear
inequality. Here H (the Hessian) and L are constant matrices, h and b are constant
vectors, and u is a vector variable.

To recast the MPC problem as a standard QP problem, we first note that the MPC
objective function (3) and constraints (4)- (6) contain both the states z and the free
variables u, while in QP only the free variables u are allowed. Thus, we need to “trans-
late” the objectives and constraints for x into corresponding objectives and constraints
for w. This is in principle trivial since the state-space model (1)-(2) provides z as a
function of u (and z,). The states x; for i« = 1, Np as a function of the current state
zo and inputs u; for i = 0, Np — 1 are given by applying the state-space model (1)-(2)
repeatedly for ¢ = 0, Np

A B 0 ... 0 0
A? AB B :
T = : To + : : .0 o0o|w® (8)
ANP=1 ANe=2B ANe=3B . B 0
ANP ANr-1B ANe—2B . AB B
i ) p

Thus, we can insert this relationsship into the objective function and constraints to
arrive at the QP form. In addition, the summing in the MPC objective function as well
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as the various constraints at each sample must be put on a compact matrix form by
simply stacking all the relevant matrices and vectors on top of each other. See slides
from Lecture 13 for details.

The main tuning parameters to consider in the MPC formulation considered here are

Np — optimization horizon

Qz, Qy — weight on the states, or outputs

Qu — weight on the control input

S, Sy — weight on “terminal” state, or output (often used to ensure stability)

— constraints on input, often given by system
— constraints on output, usually imposed by design

Umin, Umaz

Ymin, Ymaz
In addition, one usually needs to design an observer for the states and then this will
also contain tuning parameters.

Below we will consider the impact of some of the above parameters on the performance
and stability of MPC for a simple SISO (Single-Input-Single-Output) example.

2 Tasks

Start by downloading the files mpc_setup.m, mpc_sim.m and mpc_calc.m from
http://www.s3.kth.se/control/kurser/2E1252/download.shtml
Make sure to put these in your working directory, i.e., from where you start Matlab.

The MPC calculations in mpc_calc.m involve solving a QP problem and for this task
it relies on the function quadprog from the Matlab Optimization Toolbox. If you do
not have this toolbox available you should do the exercise in the XQ computer labs.

We shall consider controlling a system described by the model

1 10
YO = mron0s+10 @

and using the sampling time T' = 0.2 s. For simplicity we will assume that all the states

are available, e.g., from a separate observer.

Throughout the exercise we will assume that the following parameters apply
Umin = —1, Umaz =1, Uref =0, Qy =1

while we will vary the other parameters.

To run the simulations in the tasks below, you should follow the procedure

1. Modify the relevant parameters in mpc_setup.m and then run mpc_setup.

2. Perform a simulation by running mpc_sim. The number of samples considered in
a simulation can be changed by changing the parameter NN in mpc_sim.m prior
to running the simulation.



2.1 Prediction horizon
We shall here use the parameters
Qy =1, Qu =1, Sy =1, Umin = =1, Umaz = 1, Ymin = —10, Ymaz = 10, Uref = 0, Yref = 1

Here S, is the weight on the “terminal” output ynp and corresponds to a weight S =
CTS,C on the terminal state znp.

Task 2.1. Edit the file mpc_setup.m: enter the model G(s) and the samping time T,
as given above. Also enter the parameters as given above. Run mpc_setup and then
mpc_sim to verify that the programs work properly.

Task 2.2. We shall start with a prediction horizon of 20 samples, i.e., Np = 20.
Change the corresponding parameter Np in mpc_setup.m and then run a simulation
(run mpc_setup and then mpc_sim as described above). Describe the response; rise
time, overshoot and active constraints (if any).

Task 2.3. To reduce the computational time for the optimization one may try to reduce
the prediction horizon Np (the horizon is also often considered the most important
tuning parameter in MPC). Try to reduce the prediction horizon to Np = 10 and
repeat the simulation. What happens? Consider also reducing it further to Np = 7.
Try to explain the observed behavior.



Task 2.4. Try now with a very long horizon, Np = 200. What happens with the
computational time? Are any constraints active at any time? Considering the objective
function in (3), what type of control do we in principle get with a long horizon and no
active constraints?

2.2 Weighting the “terminal” state

The weight S on the terminal state zyp, i.e., the state at the end of the prediction
horizon, is also an important tuning parameter. In particular, by increasing S one can
in general improve stability. We here consider a weight S, on the terminal output ynp
which can be translated into S as described above.

Task 2.5. Change the prediction horizon to Np = 7 and increase the terminal weight
to Sy = 5. Run a simulation. Comparing with the result for Np = 7 and S, = 1 above,
what is the effect of increasing S,? How large must S, be chosen to obtain stability?

Task 2.6. Use Np = 7 and S, = 20. Perform first a simulation with y..y = 1 (as
before), and then a simulation with y,.; = 3. What happens when you increase the
size of the setpoint change? Why is stability dependent on the size of the reference?



Task 2.7. Consider now increasing the prediction horizon to Np = 20 and decreasing
the terminal weight to S, = 1. Perform setpoint changes corresponding to ..y = 1 and
Yref = 3 as above. From a stability point of view, what would you recommend;

e a short prediction horizon with large penalty on the terminal state, or

e a long horizon with no particular penalty on the terminal state?

2.3 Weighting the input

Just like in LQG, the relative weighting of the output and input in the objective
function is an important tuning parameter. We here consider a fixed weight on the
output @, = 1 and study the effect of changing the input weight Q,.

Task 2.8. Use Np = 20 and S, = 1. Perform step responses for y..; = 1 and with
input weight @, =1, 0.1., 0.01 and 1d — 6, respectively (4 simulations in total). How
does @, affect the response? What does the control look like when the weight on the
input approaches zero?

2.4 Imposing Constraints on the Output

Task 2.9. Use Np =20, S, =1, @, = 0.01. Peform step responses for y,.; = 1 while
imposing constraints Ymaer = —Ymin = 1.05, 1.0 and 0.9 respectively. Is the controller
able to satisfy all constraints for all time?



2.5 Infeasible Constraints

A constrained optimization problem, as the one solved in MPC at every sample, may
not have a solution that satisfies all constraints. In this case, the computations break
down. In some algorithms, like quadprog used in mpc_calc, an approximate “best”
solution is provided when the problem is infeasible.

The problem with infeasibility is more likely to occur with a short prediction horizon
(“bad planning”)®.

Task 2.10. Use Np = 10, Sy = 1, —Ymin = Ymaz = 1.5. Perform simulations with
Yref = 1.5 and @y = 0.1 and @, = 0.01, respectively. What happens when the weight
on the input is reduced?

2.6 Fine Tuning the MPC

Task 2.11. Try to tune the MPC controller, i.e., select a set of parameters for the
MPC problem, that gives the “best” response to setpoint changes y,ef in your opinion.
Motivate your choice.

In some MPC algorithms, constraints are imposed also beyond the optimization horizon to deal
with this problem. In this case one must make assumptions on the input for i > Np, i.e., u = ures or
u; = —Lz; (state feedback).
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1 Introduction

In this laboratory experiment we will control the four-tank process, which is a mul-
tivariable system. In particular we will investigate interactions between inputs and
outputs as well as properties of non-minimum phase dynamics.

The experiment is divided into two occasions. On the first occasion, the modelling and
the manual control is performed. This will give you numerical values of some important
parameters. Relevant parts of the computer exercises are then repeated, using the
identified parameters, to obtain model based controllers. On the second occasion, the
control design is investigated. In the Appendix you find information about the computer
program used to control the process.

Labbsalen:

Signing up for the laboratory experiment: It is

very important that you sign up for the same "Group | 1 | 2 | o
letter” on both laboratory occasions. The Group letter o
determines which double-tank processes to be connect- a4 10
ed into a four-tank process. Group A uses process 1 and ‘

2, group B uses process 3 and 4... and group F uses I S I 6 l 11
process 11 and 12. The figure to the right defines the

double-tank processes in the laboratory hall. | 7 I 8 | 12

Preparations for occasion 1: Chapters 3.3, 3.5, 3.6, 6.5, 7.3-7.5, 7.7, 8.3, 10.5 in
Glad, T. and Ljung, L.: Control theory—multivariable and nonlinear methods. Read
the lab instructions and solve the problems that can be solved in advance. Also read
the Appendix. (This way you will save much time.) Bring a watch or a cell phone with
a stopwatch to the lab.

Preparations for occasion 2: Relevant parts of the computer exercises are repeated
using the parameters identified during lab occasion 1. Design suitable decentralized
controllers according to the instructions in the computer exercises. One controller for
the minimum phase case and one for the non-minimum phase case. In addition to this,
construct a robustified controller (for both cases) using the Glover-McFarlane method.
Altogether, you will use four controllers. Bring a USB stick to the lab containing Matlab
files and generate the controllers on the lab computer. On page 8 it is described how
to name and save the controllers. NB: you have to bring you own USB stick to
the laboratory hall.

Presentation: All problems in this laboratory experiment should be solved and pre-
sented in a written report. The date when the report should be handed in is indicated
in the course instructions. The report should contain all relevant figures. Don’t forget
to save data for the plotting of figures.

In the exercises below a physical model of the four-tank process will be constructed.
Then, we will investigate manual control and coupling between the tanks. Performance
limitations due to non-minimum dynamics will be investigated. Finally, we will design
model based controllers, more specifically decentralized PI control and robust control
using the Glover-McFarlane method.
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Figur 1: The four-tank process

2 Laboratory occasion 1

2.1 Modelling

Here the nonlinear differential equations which describe the four-tank process will be
derived. The process is shown schematically in Figure 1. For each tank the following
relation holds:

dav = (an - QOut)dt
where dV is the change in water volume during the time dt¢. Divide this equation by dt
and assume that V' = Ah where A is the cross section area of the tank and h its water
level. The we obtain i

AE = Qin — Qout

For the outflow of water, Bernoulli’s law holds:

Qout = G \/Q.Q-h

where a is the cross section area of the outlet hole and g = 981cm/s?. The flow q
generated by a pump is considered proportional to the applied pump voltage u:

q=ku
where k is the constant. This flow is then divided according to
q =7ku, qu=1-7ku, v€][0,1]
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where < indicates the setting of the valve which is connected to the pump. ¢; denotes
the flow to the lower tank and ¢y is the flow to the upper tank.

Exercise 2.1.1. Show that the following equations describe the water levels in the

four tanks.
dh, ax as Yiky
— = ——1/2gh —1/2 ——
dt A g 1+A V2ghs + 1w

dhy _ Yoko
P AQ 2ghs + A 2ghs + A—u2
dhg ( ’}’2)162

2B 25 /9 A7)

i e T

dhy 04 (1 - 71)k1

@ - A, 2ghg + —A4 Uy

where index 7 in A;, a; and h; refer to tank ¢ and index j in k; and ~y; refer to pump j
and valve j.

Assume that the levels in the lower tanks are measured by sensors for which the output
voltages y; are proportional to the water levels h;:

Yi = kchz
where k, is a constant.

Exercise 2.1.2. Write down the equations which describe an equilibrium u$, u3, h?, b3, 3, hY, 39, 3
for the tanks.

Let Au; = u; — u, Ah; = h; — hY and Ay; = y; — y¥ denote the deviations from an
equilibrium. Introduce

Ahy
_ Aul o Ahg . Ayl
u_[AUQ}, r= Ahg ’ y—[AyQ
Ahy
Exercise 2.1.3. Show that the linearized system is given by
[~ 0 A% O w0
d_| 0 - 0 | | 0 um
a | 0o o - o |7 0 ((=pk ¥
00 0 -5 a Xi)kl 0
[k 0 00
Y=lo k0o0]"




where

Exercise 2.1.4. Show that the transfer matrix from u to y is given by

k (I1=72)k
Gls) = [911(8) g1a(s) ] _ i (TsT3) (L oT)
g21(s) gna(s) Ty B

Exercise 2.1.5. The zeros of G(s) are given by the zeros of

kikacico (1 =) —)
= ——" "= (1 +8T5)(1+sTy) —
H?:l(l + STi) ( 3)( 4) Y172

det G(s)

Show that G(s) is minimum phase if 1 < ; + 72 < 2 and that G(s) is non-minimum
phase if 0 <y + 72 < 1.

Exercise 2.1.6. Show that the RGA of G(0) is given by
A 1=
1—X A
where A = v172/(71 + 72 — 1). In the minimum phase case we have 7, = v, = 0.625

and in the non-minimum phase case we have 7, = v = 1 — 0.625 = 0.375. Calculate
the RGA matrix for both these cases.

All tanks have cross section area A = 15.52 cm?. However, their effective outlet hole
areas vary slightly, and therefore these have to be determined experimentally. We will
use different outlet hole sizes in the upper tanks depending on if we are studying the
minimum phase or non-minimum phase case. (The outlet holes in the two lower tanks
should always have the same size). This means that we will have to determine six



(effective) outlet hole areas altogether.
The level sensors have the proportionality constant k. = 0.2 % For the minimum
phase case, 71 = 72 = 0.625 and for the non-minimum phase case we have v; = v, =

1—-0.625 = 0.375.

In order to determine the remaining parameters, (a; 2 a3 min @3 nonmin 4min A4 nonmin
ki ky), experiments will be performed.

It is important to prepare proposals for suitable experiments (in order to
solve the problems stated below) before performing the laboratory exercise.
Then, in order to perform the experiments, the four-tank process will be set up accord-
ing to the following instructions:

1. Connect the components of the four-tank process according to the instructions
in Appendix A.1.

2. Turn on the computer! and login as “student” with password ”sommar”.

3. Connect the minimum phase case according to the instructions in Appendix A.2.

4. Double-click the icon "Quadrupletank” at the Desktop.

5. The program starts by asking if any controllers are to be loaded. Answer no by

ReB )

typing "n” and pressing enter.
6. Start the program by pressing the green Start button.
7. Turn on the two UPM’s by pushing the buttons at the back.

8. Choose 50 (% of maximum voltage) of the control signals in the boxes ”"Control
sig. pump 1/2”; and check that water is pumped into all tanks.

Exercise 2.1.7. Propose a suitable experiment? to determine k; and ks [%’l‘f], and
perform it.

Tf the computer does not start this is probably because the electricity is turned off. The main
switch is turned on by turning the key "TILL” on the electric board at the front of the hall to the
left.

2Tip: there might be air in the tubes, even when the pumps are on. Let the water flow and squeeze
the tubes carefully to eliminate the air. A good idea is to run the experiment with u;=us=7.5 V (50%

of maximum voltage).



Exercise 2.1.8. Propose a suitable experiment to determine the four effective outlet
hole areas a; for the minimum phase case, and perform it. (In order to save time, we
will determine a3 nonmin and G4 nonmin later.)

2.2 Manual control

Solve the problems below for both the minimum phase and the non-minimum phase
case. It is suitable to start with minimum phase.

Exercise 2.2.1. Set the pumps on 50 (% of maximum voltage). Wait until stationarity
and read the levels on all four tanks from the scale indicated in cm 2 on the four-tank
process. Are the levels (fairly) in accordance with the calculations on the equations in
Exercise 2.1.27

Exercise 2.2.2. Study the step responses (the two outputs) from one input at a time
for the two cases (minimum and non-minimum phase). Does the system seem to be
coupled? Is this in accordance with the indications of the RGA?

Exercise 2.2.3. Choose suitable reference levels for the two lower tanks, for example
15 cm (60% of full tank). Try to manually set the pump voltages so that the values
displayed on the computer screen 4 become equal to the reference values. How long is
the transient time? Hint: patience is required for the non-minimum phase case. (If you
have not succeeded after 10 minutes, skip it and move on.)

3The level sensors are not calibrated exactly, and therefore the value you read from the scale does

not correspond exactly to the value displayed on the screen.
4Because of sensitive technics of measurement, it might happen that the signals from the level
sensors are subject to small jumps every now and then, so called "offset jumps”.
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1. Connect the components according to the non-minimum phase case described in
Appendix A.2.

2. Go back to Exercise 2.1.8 and determine a3 nonmin @0d @4 nonmin-

3. Now repeat the exercises above for the non-minimum phase case.

Exercise 2.2.4. For the above exercises, what are the most important differences
between the minimum phase and the non-minimum phase case?

The four-tank process will now be disconnected in the following way:

1. Turn off the computer and the UPM:s.
2. Disconnect the four-tank process according to the instructions in Appendix B.
3. Make sure that the laboratory spot is nice and clean.

4. If nobody else is working in the lab hall, turn off the main switch of the hall. It
is done by pushing the red button "FRAN” at the electric switch board located
at the front of the hall to the left. Turn the light off if you are the last person to
leave the hall.

5. Do the preparation tasks for the next laboratory occasion (they are described on
the next page.)



3 Calculation of controllers

Before laboratory occasion 2, four controllers will be calculated.

Exercise 3.0.5. The values of the effective outlet hole areas, the k; and ~v; (i = 1,2)
that you obtained will now be used to calculate controllers for the next laboratory
occasion. Therefore, change the values in the files minphase.m and nonminphase.m.
After that, repeat relevant parts of the computer exercise to obtain four controllers.
Two controllers for the minimum phase case and two for the non-minimum phase case.
In each phase-case, the first controller should be the decentralized controller which
you thought was the best when performing the computer exercise. Do not forget to
motivate your choice. The second controller should be a robustified Glover-McFarlane
controller.

The controllers are saved as . MAT files using the function save (type help save for more
information). The files must be named regl.MAT, reg2.MAT, reg3.MAT and reg4.MAT
and must contain state space representations of controllers. The state space matrices
must be named A, By, C and Dy. NB: because different versions of MATLAB are not
compatible, the controller F' should be generated in MATLAB on the computer in
the laboratory hall. This means that you bring your code on an USB stick and run
it on the lab computer. Then, the controllers can be saved as .MAT files using the save
function on the lab computer.

If the controller F' is available on transfer function form, the following matlab code can
be used:

F=ss(F, min’);
[A,By,C,Dy|=ssdata(F);
save regX.MAT A By C Dy

The transfer of the matlab code to the laboratory computer is made with a portable
disc or a USB memory stick.



4 Laboratory occasion 2

4.1 Decentralized control

The exercises below require that you have repeated the design process in the computer
exercises with the parameters obtained on the previous lab occasion. Make sure that
small step responses and load disturbances do not cause saturation of the control
signals. Start by setting up the four-tank process in the following way:

1. Use the same laboratory equipment as in laboratory occasion 1 to connect the
four-tank process according to the instructions in Appendix A.1.

2. Turn on the computer and login as "student” with the password "sommar”.

3. Connect the minimum phase case according to the instructions in Appendix A.2.

4. Insert the USB stick, generate and save the four controllers (according to the
instructions in Section 3).

5. Double-click the icon "Quadrupletank” on the Desktop.

6. The program starts by asking if you want to load controllers. Answer yes by typing
”y” and then press enter. Locate and select regl.MAT (the remaining controllers
will then load automatically).

7. Start the program by pushing the green Start button.
8. Turn on both UPM:s by pushing the button at the back.

9. Choose 50 (% of maximum voltage) of the control signals in the boxes”Control
sig. pump 1/2”, and check that water is being pumped into all tanks.

Solve the exercises below for both the minimum phase and non-minimum phase case.
It is suitable to start with the minimum phase case.

Exercise 4.1.1. Wait until stationarity. Choose the best decentralized PI controller.
Choose Automatic in the popup menu "Operational Mode”. Make sure that you work
with small deviations from these levels, about 5 percentage points. Investigate the
system’s response from a step in one of the reference signals. What is the rise time and
the overshoot? Also, investigate the system’s response to different load disturbances:
pour a cup of water in one of the lower tanks; open an extra outlet in one of the upper
tanks. How long time does it take for the controller to eliminate the load disturbances?



Now connect the non-minimum phase case according to the instructions in Appendix
A.2. Then repeat the exercise above for the non-minimum phase case. (Problems can
occur when opening an extra outlet in one of the upper tanks. In that case, specify
what kind of problems that you get.)

Exercise 4.1.2. For the exercises above, what are the most important differences
between the minimum phase and non-minimum phase case?

4.2 Robust control

The exercises below require that you have repeated the design procedures in computer
exercise 4 using the parameters obtained previously in this laboratory experiment.

Solve the problems below for both the minimum phase and the non-minimum phase
case. It is suitable to start with the latter, since the laboratory equipment now is
connected according to the non-minimum phase case.

Exercise 4.2.1. Wait until stationarity. Choose the Glover-McFarlane controller cal-
culated according to the instructions in computer exercise 4. Choose Automatic in the
pop up menu "Operational Mode”. Make sure that you work with small devations from
these levels. Investigate the system’s response to a step in one of the reference signals.
What is the rise time and the overshoot? Also, investigate responses from different load
disturbances: pour a cup of water in one of the lower tanks; open an extra outlet in
one of the upper tanks. How long time does it take for the controller to eliminate the
load disturbances?

Exercise 4.2.2. What are the most important differences in performance when com-
paring the different controllers?

Connect the minimum phase case according to the instructions in Appendix A.2. Then
repeat the exercises above for the minimum phase case.
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Exercise 4.2.3. For the above exercises, what are the most important differences
between the minimum phase and the non-minimum phase case?

Before you start writing the laboratory report, you have to disconnect the laboratory
process. Perform the following steps:
1. Turn off the computer and the UPM:s.

2. Unscrew the plugs which are located under the two upper tanks. For each process,
place the plug at the bottom to the left with the other extra plugs.

3. Plug the middle hole in both upper tanks. It is not necessary to pull tight.
(Remember that the processes are fragile.)

4. Disconnect the four-tank process according to the instructions in Appendix B.
5. Make sure that the laboratory spot is nice and clean.

6. If there is nobody else working in the laboratory, turn off the main switch of the
hall. This is done by pushing the red button "FRAN? at the electric switch board
at the front of the hall to the left. Turn off the light if you are the last person to
leave the hall.

7. Write the report!
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A Manual for the four-tank process

This manual is divided into three parts. The first part describes how to connect the
process. The second describes how to connect the minimum phase and non-minimum
phase case. The third part deals with the graphic user interface.

A.1 How to connect the components of the four-tank process

The four-tank process consists of two double-tank processes connected to each other.
The double-tanks are used for the laboratory experiments in the basic control course.
Now we will describe how to connect the components of the four-tank process.

 Find the two double-tank processes that you are going to use. (Your group letter
decides which two process that you are going to use, see "Signing up for the
laboratory experiment” on page 1.) From now on, we will denote these two process
"left” and "right”, as seen from the front. Carefully remove the blue water bowls.
Release the right process by disconnecting the two cords connected to it. Carefully
put the right process as close to the left process as possible. (Put both processes
at the same table, so that there is no differences in altitude between them). On
top of the cupboard at the back of the hall, there is a bigger water bowl which
you will place under both the two lower tanks. Fill it with water, almost to the

top.

o We will only use the computer of the left process, and we will soon connect the
measurement and control signals. However, we will use the UPM:s (Universal
Power Module) of both processes. There is an 1/O card which belongs to the
computer, and you find it at the back of the computer. We will use the card’s
analogue Input and Output sockets. The left process should already be correctly
connected, but to be sure we will verify it. Its control signal 3 should be connected
to the card’s ”Analog Output kanal 0”. Its level sensor for the lower tank® should
be connected to the card’s "Analog Input kanal 5”. The remaining three level
sensor cords should not be connected. Disconnect the cords which are connected
to the I/O card of the right computer (not the broad grey flat band cables).
Move the UPM of the right process closer to the left one, so that its cords can
be connected to the I/O card of the left computer. Connect the control signal
of the right process to the card’s "Analog Output kanal 1” and the lower tank
level sensor of the right process to ”Analog input kanal 4”. Finally, connect the
two non-connected cords 7 from the right UPM to the right process. If you are
unsure: check once again that you have connected the process correctly!

(At the end of both laboratory occasion 1 and 2, you will disconnect the four-tank
laboratory. Reserve 20 minutes for that procedure.)

5The black cord which is connected to "From D/A” at the UPM.

6The white socket, (marked with 2), at the broad socket with 4 channels which is connected to "To
A/D” at the UPM.

"The black cord connected to ”To Load” at the UPM and the grey cord.
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A.2 Minimum phase and non-minimum phase settings

Depending on which phase case you are working with, you should use different outlet
holes of the upper tanks, and connect the cords differently. Below you find a description
of this procedure.

For each double-tank process, there are three extra outlet plugs (besides the those that
are already screwed under the tanks). One located far to the left which has no holes,
one in the middle which has a small hole and finally one to the right which has a large
hole.

In the minimum phase case, each pump pumps most of the water into ”its own” lower
tank, and only a smaller fraction of water into the upper tank at the other side. With
this setting, we obtain a v larger than 0.5. In the non-minimum phase case we have
the opposite situation, and +y is therefore less than 0.5.

The minimum phase case is connected in the following way.

« Put something on top of the two lower tanks, for example a paper towels. (To
make sure that nothing falls down into them 8.)

o Use the key attached to the process to unscrew the plugs under both the upper
tanks. Place each screw among the set of extra screws on each process (to the
left of the plug located at the far right side).

o Put the small outlet holes in both the upper tanks. It is not necessary to pull
tight. (Remember that the processes are fragile.)

o The four tubes, which will be connected according to the instructions below,
have to end approximately 27 cm above the bottom of the upper tanks®. It is a
good idea to pull the tubes through the holes located at the top of the four-tank
process, so that the tubes go partly at the back of the process.

o Pull the tube from "Out 1” at the left process to the extra plastic pipe next to
tank 3, so that its water falls directly into tank 1. (The numbering of the tanks
is given in Figure 1 on page 2.)

o Pull the tube from "Out 2” at the left process to tank 4.

o Pull the tube from "Out 1”7 at the right process to the extra plastic pipe next to
tank 4, so that its water falls directly down in tank 2.

o Pull the tube from "Out 2”7 at the right process to tank 3.

81f anything falls into the tanks, one has to disconnect tubes and cords from that process. Then
one has to tilt the process very carefully so that the item that fell into the tank falls out.

9If the tubes end at different altitudes, the constants k1, k2, 41 and v, can be affected, because the
driving force acting on the water is changed.
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The non-minimum phase setting is obtained in the following way.

o Put something on top of the two lower tanks, for example a paper towels. (To
make sure that nothing falls down into them).

o Unscrew the plugs located under the two upper tanks. For each process, place
the plug among the set of extra screws (to the right of the plug located at the
far left side).

o Put the medium size holes in the two upper tanks. It is not necessary to pull
tight. (Remember that the processes are fragile.)

o The four tubes, which will be connected according to the instructions below,
have to end approximately 27 cm above the bottom of the upper tanks. It is a
good idea to pull the tubes through the holes located at the top of the four-tank
process, so that the tubes go partly at the back of the process.

o Pull the tube from "Out 2” at the left process to the extra plastic pipe next to
tank 3, so that its water flows directly into tank 1.

o Pull the tube from "Out 1”7 at the left process to tank 4.

o Pull the tube from "Out 2” at the right process to the extra plastic pipe next to
tank 4, so that its water falls directly into tank 2.

o Pull the tube from "Out 17 at the right process to tank 3.
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Figur 2: The graphic user interface.

A.3 The graphic user interface

o The interface is opened by double-clicking on the Quadrupletank matlab icon at
the desktop.

o The program starts by asking if you want to load controllers. Choose yes or no
depending on if you have designed controllers or not.

e Click on the green or red button at the top to the right to start or stop the
process.

« Click on the popup menu Regulator to choose controller. (This popup menu is
only displayed if you have loaded controllers.)

o The tank levels and the reference signals are plotted in the upper graph, and the
control signals are plotted in the lower. The upper graph is scaled in percentage
of full tank, so that 100 corresponds to 25 cm. The lower graph is scaled in
percentage of maximal control signal, so that 100 corresponds to 15 V.

e In the popup menu Operational Mode you can switch between manual and au-
tomatic control.

o In order to change the manual control signal you could either pull the handle or
type directly in the box.

« To change the reference value you can either pull the handle or type directly in
the box.
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By right-clicking at an axis, a dialog box for zooming is opened. You can also use
the capture button to study and zoom collected data.

The Time Offset at the bottom to the left shows the time between 0 and the
time displayed on the x axis. To obtain the true time at the x axis, you therefore
add the offset value. (The time ¢t = 0 is the time when you start the program
using the green start button.)

The Capture button is used to study collected data during operation. Click on
the button to obtain a figure with reference signals and measured signals. (Use
the zoom tool in the figure menu to zoom).

Save data by clicking on the capture button. Then you obtain a box where you
can save data. Data (time, measured signals, reference signals and control signals)
is saved on the USB stick as "data.mat”. If you already have a file with that name,
the name becomes datal.mat etc up to data3.mat. (After that you have to use
another USB stick). The data is loaded into Matlab with the function "load
dataX.mat”. Then you obtain a variable containing the saved information.
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B

How to disconnect the four-tank process

When disconnecting the four-tank process it is very important that the
middle size holes are screwed in the upper tanks. Check this and therefore
go through the items below:

10.

. Empty the large water bowl and put it on top of the cupboard at the back of the

hall.
Disconnect the tubes between two double-tank processes.
Make sure that no tube is connected to "Out 2”.

Connect a tube to "Out 17, put it through some hole so that it comes out at
the back of the process, and then through the hole which is just above the upper
tank. Then put the tube into the upper tank. Do this for both processes.

Remove the cables of the right UPM from the I/O card of the left computer.
Also, disconnect the right process by disconnecting the two cords connected to
it.

Put back each process (with its UPM) at its original spot and put a blue water
bowl under each double-tank process.

Connect the level sensors to each tank!® at the card’s "Analog Input kanal 4”
and "... 5” respectively. (The yellow at 4 and the white at 5.)

Connect each control signal ! to "Analog Output kanal 0” at each 1/O card.

Finally, connect the two non-connected cords'? from the right UPM to the right
process.

Go back to the instructions on page 7 (laboratory occasion 1) or page 11 (labo-
ratory occasion 2).

10The yellow and white sockets, (marked with 1 and 2 respectively), at the broad cord with 4
channels connected to "To A/D” at the UPM

"The black cord connected to "From D/A” at the UPM.

12The black cord connected to "To Load” at the UPM and the grey cord.

17






