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Basic Idea of MPC: Receding Horizon Control
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@ Attime k solve an open loop optimal control problem over a
predefined horizon and apply the first input

Q Attime k + 1 repeat the same procedure (the previous optimal
solution can be used as initial guess)

Bellman’s principle of optimality
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Model Predictive Control

Model Predictive Control (MPC)

@ Uses models explicitly to predict future plant behaviour
@ Constraints on inputs, outputs, and states are respected

@ Control sequence is determined by solving an (often convex)
optimization problem each sample

@ Combined with state estimation
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@ Refineries (Shell in 1970s, "Dynamic Matrix Control")

@ (Bellman), Propoi (1963), Richalet, Prett, Morari, ...
@ Main reasons for success

@ Suitable for multivariable systems

o Respects actuator limitations: no integrator wind-up, saturation
problems handled explicitly

@ Process can be run close to constraints, which is often
cost-effective
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MPC Optimization Criterion

Control changes Au(k + i) = u(k +13) —u(k +¢—1) are
optimization variables

Hpy+Hy—1 H,—1
Jk)y= > |latk+ilk) —rk+ |5+ D lAuk+9)|l%
i=Hy, 1=0

Evaluated signals z = C,x + D,u
H,,: system time-delay
H,,: cover typical closed loop time constant

H,: somewhat larger than H,
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MPC Prediction Horizons (with A, = 0)

Large H, and H,, give better performance but more computations and
numerical problems
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Au(k) vs u(k)

Why penalize Au(k) instead of u(k)?

@ Reference r # 0 requires u # 0 to avoid static error
@ No need to guess and specify u,.

@ Still possible to penalize u(k), just include w in z-vector

TAT: Do we get integral action by penalizing Awu instead of u?
Consider y = u + d, do we get y = r in stationarity if d # 0?
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MPC Block Diagram (typical)
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Assumed Dynamics

Tp+1 = Azp + Byug + By + Bywy
yr = Cxp+ Dyvp + Dywy

. - d
where v, is @ measured disturbance and w; = lek .
k
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MPC Prediction Algorithms

Future trajectories starting at time £ over the prediction horizon H,

Assuming v is not known in advance

Hy—1
Yk+Hylk = C A Prr + Z AHP 1B uk 1+ Z Auz +DUUHP
7=0 =0
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MPC Prediction Algorithms

All H,, predicted time steps can be summarized as

Yk+1 Auy, Vg

Yk+2 Augyq Vk+1
. = Szxk' =13 Su—luk—l al; Su . + H .

Yk+H, Augyp, 1 VktH,
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MPC Prediction Algorithms

...where
CA
Sy = 0742 e Rpyxne
cAt
CB,
S, 1= | CAB, +CB, | e RH»m=xnu
it cAIB,
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MPC Prediction Algorithms

..and
CB, 0 0
CBu—i—CABu CB, 0
Su _ y . c RHpnyXHpnu
T 1CAJB S ' CAIB, ... CB,
CB, D 0 ... 0
CAB, CB, D
Hv _ ' ' . e RHP’I’LyX(Herl)TLU
CAH»—1B, CAH»—2B, CAH»—3B, ... D

Bo Bernhardsson and Karl Johan Astrém Model Predictive Control (MPC)



MPC Blocking Factors

@ At each step the following cost function is minimized

Hp—1 Hy,—1
J(k) = Y [g(k+ilk) —r(k+ilk)|[G+ Y |Auk+ilk)|%
i=k i=k

@ Blocking factors can be used to ease the computational
requirements. This means that constraints and cost is only
evaluated at certain time steps, contained in sets [;, and I,,.

J(k) = > ok +ilk) —r(k+ k)15 + D [[Au(k +ilk)||%
iel, i€l

@ Move blocking restrictions can also be imposed on the control
signal, so that Au = 0 at certain time steps
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MPC Optimization Variables

Introduce the optimization variables, if we have reference control
signals uj,

T
U1 Upt1
€y - 5 > . )
uT
Uk+Hp—1 k+H,—1
and
Auy, Yk+1 Tkt1
Augiq Yk+2 Tk+2
€EAu — c y Cy = g 7 .
Augyg, 1 Yk+H, Tk+H,

for control moves and reference tracking
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MPC Optimization Variables

For unconstrained optimization, the cost function is
Tyrr2 T 1172 Tyi72
J(z) = e, Wiey, + ea, Wi, A + e, Wey

where the first term penalizes control signals, the second penalizes
control moves and the last term penalizes tracking error.

Matrices W, W, and W, are design parameters.

Alternative notation (here without ¢,,)

Hpy—1 H,—1
J(k) = Y gk +ilk) —r(k+ilB)IG+ D llAu(k+ilk)|%
i=k i=k

Matrices () and R are (possibly time-varying) design parameters.
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The MPC controller should respect the constraints

A Au(k') A 9 08
Umin < u(k') < Umaz

Zmin < Zc(k') L Zgpom

Some variables might be constrained, but have no reference values

If a constrained variable is not measured, the constraints will be put on
an estimate instead
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Soft or Hard Constraints?

Always need to find a u. Problem if constraints unfeasible

Replace hard constraints with soft constraints.
Minimize slack variable € > 0 so that

min

Yk+1
Wy Yk41
min :
Yk+Hp Yk+H
unLin P
k41 Uk
) _eymin <
min Up _
Yk+Hp kXHp 1
min ug
Auk
Agmin AUkt Hy —1
k- Hqy—1

IN

mazx

AUIH-Hu il

L R

Relaxation vectors V%" > 0, V™% > () are user defined
parameters. Larger V', more relaxed constraint
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MPC Optimization Constraints

For the constrained case, a suitable MPC cost criterion to be
minimized is
J(z,€) = el W2e, + X W3, enu + eZWery + pe€?

subject to dynamics and constraints

A large value of p. penalizes constraint violation harder.

In practice, softening of output constraints is often a good idea.
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MPC Design Parameters

Internal Dynamic Model

(State Estimation Parameters)
Prediction- and Control Horizons
Blocking factors

Weighting Matrices

Constraint Parameters

Sample rate

6 6 6 ¢ 6 ¢ ¢ o

Integral action? alt. disturbance model
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Quadratic Optimization

@ The optimization problem is often posed as quadratic
programming

min, %xTHx + fTz
subject to Ax < b

@ In MATLAB: 'quadprog’

Advantages with QP: Fast, reliable software
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Disturbance Models

@ When solving the optimization problem, predicted future values of
the disturbances are needed

@ With some knowledge about the nature of the disturbances the
prediction can be improved

@ Often Gaussian noise and Kalman filter is used

@ Can also formulate the prediction problem as a QP problem, e.g.
maximizing log-likelihood of measurements

@ Optimization approach to estimation can e.g. give robustness to
outliers
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State Estimation - Error Update

-0 -0
Tk|k Lhok—1

~d _ ~d m N
Ty | = | Topp—r | + K (8" — 5")
A1 A1

Lk|k Lh|k—1

d : known disturbance
m : reference model

Model Predictive Control (MPC)
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MPC Internal Dynamic Model

1‘2+1 Ao B()Cd 0 .1‘2 Bu
x%-ﬁ-l = 0 Ad 0 .Tg + 0 Uk
x?—i—l 0 0 Am xz@ 0
w
B, ByD;, 0 B, B, wffl
+ 10 | v+ By 0 0 0 wIZ
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State Estimation - Temporal Update

fgﬂ\k Ap BoCqy 0 ig\k—l By
don| = [0 A o |sten| |0 w
Ttk 0 0 Am) (2, \
w
B, BoDg 0 By B)) |,
+| 0w+ | Bg N U4 wku
0 0 B,, 0 0 wﬁ
i
B
I = (Co Cq Cm] izw—l
jm
k|k—1
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@ MPCtools - Developed by Johan Akesson, Automatic Control,
Lund

@ Separates measured/constrained/controlled outputs
@ Integral action by means of disturbance estimation
o Different QP-solvers for the optimization problem
@ Used in Lab 3 i Predictive control
@ Mathworks - Model Predictive Control Toolbox
@ GUI or text-based control design
9 Integrated observer design and basic disturbance modeling
@ MPT - Multi-Parametric Toolbox for Matlab from ETH
@ Supports linear, nonlinear, and hybrid system descriptions
o Explicit MPC
@ CVX+CVXGen: MPC code generator, runs typically on micro or
millisec for small size problems. Nice project!
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MPC Toolbox

Model assumptions in MPC toolbox

x(k+ 1) = Az (k) + Bu(k)
y(k) = Cya(k)
z(k) = Cx(k) + D,u(k)
ze(k) = Cex(k) + Deu(k)

@ Measured outputs y
@ Controlled outputs z
@ Constrained outputs z.

(no known disturbances)
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MPCTool - Control Problem

Cost function

Hp+Hy—1 Hy—1
Jky =" ke +ilk) —r(k+ilk)I5+ D Au(k +ilk)|%
i=H,y, i=0

(1)

@ Prediction Horizon, H,
@ Control Horizon, H,,
@ First sample to be included, H,,
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Solving the Quadratic Program (QP)

One can rewrite the optimization criterion on the form

min J(k) = AUTHAU — AUTG + ETQE
subject to QAU < w

where AU, H,G,E, O, ), w are large vectors/matrices, used to stack
up the equations above for all time indices.

Details are in the MPC toolbox manual, but will not be needed

Convex problem - efficient algorithms
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State Estimation

Use a traditional Kalman filter, having the form

#(k +1) = Az(k) + Bu(k) + K (y(k) — C,a(k)).

Gain matrix K obtained by solving a Riccati equation

(information about state constraints are not utilized in MPCTool)
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Error-free tracking - Integral Action 1

@ One option is to use a disturbance observer
@ A step disturbance is assumed to act on the input, the following
extended model is then used (when r = 0):

Th+1 A 0 B Tk B

Vk+1 = 0O I O Vi + 0 Uk

djor1 0o 0 IJ |ds 0

%, == I [C’Z 0 0] [;13;‘5 v,{ d;‘f]T
Ya = [Ca I O] [Q:Clgr Ulz; dclcr] '

@ Using an observer with this model structure will introduce integral
action giving z = 0 in stationarity.

If more outputs than inputs, one must introduce constant output
disturbances v on the outputs y, that shouldn’t get integral action

If nrinputs = nr outputs one doesn’t need y, and vy,
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Error-free tracking - Integral Action 2

Another option is to add integrator states in the model

A 0
= __Cz I]az(k‘)+

)
?J(k)::cy O}
2k)=[C. 0]

A stabilizing feedback is calculated using the extended state. Note that
the state z; need not be estimated, since it is known perfectly by the
controller
Polynomial design interpretation to the two methods

A(@q—1)R +BS = A, A,B"

where either A, (previous slide) or A,,, (this slide) has an increased
order compared to the minimal order
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Linear Properties of the MPC Controller

The MPC controller is nonlinear, because of constraints on state and
control

However, if the constraints are not active, the controller is linear

The minimizing solutions of the unconstrained QP is then

AU(k) = (0700 + R)teT Q& (k)

for some vector K
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Linear Properties of the MPC Controller

This means the control law can be written

Auk) = [ Ko Ko Kio ][ 17(R) u"(k=1) &7(k) ]

where [ K, Kg K } is given by the first m rows of I_(S

This means that with

P(2) =Cy(zI — A)'B
H(z) = —KqHy(2)
Hy(z) = (2I - A+ KC,) 'K
Hy(z)=(2I - A+ KC,)™'B

we get the following figure
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Linear Properties of the MPC Controller

—= Kur [~ -] - P(z -
Koy [~ Hy (2}
— K~ Hy(z
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MPC Tools

MPC controller calculate ,simulate and evaluate in Matlab/Simulink

Good QP solver implementations with active set and interior point
methods

Main commands: MPClInit (output: data-structure "md"), MPCSim,
MPCController, MPCfrsp

Mode
Mode
Mode

: State feedback.
: State feedback with explicit integrators.

N = O

: Observer-based output feedback.

e 6 6 ¢

Mode 3: Observer-based output feedback with explicit
integrators.

@ Mode 4: Observer-based output feedback with a disturbance
model that gives error free tracking.
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MPC Tools

: Step

u

. |
MPCController

Flant

5-Function
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#_hat

Figure: A Simulink model where the MPC controller is used to control a
nonlinear plant.
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Example - Quad Tank

I—m 1—
Tank 3 Tank 4
e
Pump 1 Pump 2
U Tank 1 Tank 2 ) U9
~1 Ny 1

Challenging MIMO process. Parameters 1, y2 control the flow
structure to the upper and lower tanks respectively

Non-minimum phase dynamics if e.g. 71 = 72 = 0.3

See e.g. MPCTools manual for a model

Bo Bernhardsson and Karl Johan Astrém Model Predictive Control (MPC)



MPC Controller Parameters

Parameter Value

diag(0.01, 0.01)
diag(1, 1, 1, 1)/diag(1,1, 1, 1,1, 1)
diag(0.01, 0.01)

h sampling rate = 3 sec
H, 30

H, 1

H, 10

I, blocking factor 2

I, blocking factor 2

Q diag(4, 1)

R

W

v

Constraints: 0 < z < 19.8 cm on all tanks
0 < u <10V on both pumps
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Typical Code

% Some initialisation of matrices left out here
Hp = 30; 7% Prediction horizon

Hu = 10; % Horizon for varying input signal
Hw = 1; % First penalty sample

zblk=2;

ublk=2;

Q = diag([4 1]);

R = 0.01*diag([1 1]);

W = diag([1 1 1 11);

V = diag(0.01*ones(1,2));

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk,
du_max,du_min,u_max,u_min,z_max,
z_min,Q,R,W,V,h,2,’gp_as’);

MPCfrsp(md, 10) ;

[x,u,y,z,zp,up] = MPCSim(md,s,d);

% Plotting left out here
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Results, simulation on linearized plant
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Dashed: Kalman filter, no integral action
Solid: Kalman filter with disturbance observer



Results, simulation on nonlinear plant
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Works well
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Results, MPC linear behavior

Without the contraints, the MPC controller gives the following gain
curves. The plots show singular values for the 2 x 2 system.

Closed Loo Sensitviy Funci
Closed Laop Sensitivity Function P ensitivity Function
0 3 ool 0N >
. g
5 0
30 50 8 - = ]
10 10 10 o 1 C 0 0 0'
Frequency (rad/s) Frequency (radis) Frequency (radls) Frequency (rad/s)
Complimentary Sensitivity Control Sensitivity to Noise Complimentary Sensitivity Control Sensitivity to Noise
g g n
. o H 2
g g o 0
0 $ o 5 ‘
£ L ‘
% " )
10 10 10 10 10 o 10 o o
Frequency (rad/s) Frequency (rad/s) Frequency (rad/s) Frequency (rad/s)

Left: Without integral action
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Explicit MPC

@ For applications where very short sample times are required,
there may not be time to solve the optimization problem at each
time step.

@ Explicit MPC calculates a state feedback law that is equivalent to
MPC in a specific region of the state-space

@ As constraints are activated, the feedback law changes in
different parts of the state-space

A

@ Certainty equivalance used u = — K (2)%
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Explicit MPC Example

For the plant

(5) = 57U()
with constraints
-3 <y)< 3
—-0.1 <u(t)< 0.1

the regions might look like...
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Explicit MPC Example
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CVXGEN

Developed at Stanford

CVXGEN generates fast custom code for small, QP-representable
convex optimization problems, using an online interface with no
software installation. With minimal effort, turn a mathematical problem
description into a high speed solver.

See http://cvxgen.com/
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CVXGEN

@ Describe your small, quadratic program (QP) representable
problem with a simple, powerful language.

@ CVXGEN automatically creates library-free C code for a custom,
high-speed solver. This can be downloaded and used
immediately, and requires nothing but a C compiler. CVXGEN
also supplies a Matlab function that, with one command,
downloads and builds a custom Matlab mex solver.

@ CVXGEN performs most transformations and optimizations
offline, to make online solution as fast as possible. Code
generation takes a few seconds or minutes, producing solvers
that work in microseconds or milliseconds. Compared with
generic code (CVX), solution times are typically at least 20 times
faster, with the smallest problems showing speedup as large as
10,000x
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CVXGEN: MPC Example

Optimization problem

We will model the optimization problem

minimize  31_ (7 Qxe + 0] Rug) 4 %L, | Qrinai X741
subject to X1 = Ax + Bug, =l

[e] = bipaes  E= 000 T

|trer:s = ti||oc =5, ¢t=0,...,T—1

with optimization variables
BoXp,..., x741 € R" (state variables)

oy, tr € R"™ (input variables)
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CVXGEN: MPC Example - Input Code

u_max nonnegative
S nonnegative

(quad(x{t], Q) + quad(u[t], R)) + quad{x[T

1+ Q final)

®[t+1] == A*x(t] + Beu[t], t=0..T
abs(uft]) <= n max, t=0..T
norminf(uft+l] - uft]) <= 8§, t=0..7T-1
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