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Non-model based real-time optimization
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When limited knowledge of the system is available
» E.g. a nonlinear equilibrium map with a local minimum

Popular around the middle of the 1950s
Revival with proof of stability *
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Very attractive with the increasing complexity of engineering systems

IM.Krsti¢ H.Wang, Stability of extremum seeking feedback for general nonlinear
dynamic systems, Automatica 36, 2000



Examples of application
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active flow control

aeropropulsion

colling systems

wind energy

human exercise machines

optimizing the control of non-isothermal valve actuator
timing control of HCCI engine combustion

formation flight optimization

beam matching adaptive control

optimizing bioreactors

control of beam envelope in particle accelerators



Problem statement

Consider a SISO nonlinear model
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performance function
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Suppose that we know a control-law
u = a(x,0) (3)

parametrized by a scalar parameter
0.

> assume static state-feedback
law

> assume scalar # and y,

The closed-loop system
x = f(x,a(x,0))

has equilibria parametrized by 6.



Problem statement - assumptions

Assumption

» We have a control law designed for local stabilization. This control
law need not be based on modeling knowledge of f(x, u).



Problem statement - assumptions

Assumption

» We have a control law designed for local stabilization. This control
law need not be based on modeling knowledge of f(x, u).

» There exists a 0* € R such that

(hol)'(67) =0, (4)
(hol)"(6*) >0 (5)
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The feedback scheme

> Perturb the plant with a slow periodic signal asin(wt)

» High-pass filter the output: y — n

» Multiply with asin(wt)
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The feedback scheme

Perturb the plant with a slow periodic signal asin(wt)
High-pass filter the output: y — 7
Multiply with asin(wt)
Low-pass filter to estimate the gradient £ &~ dy /00
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> &> 0: asin(wt) and (y — 1) in phase
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The feedback scheme

Perturb the plant with a slow periodic signal asin(wt)
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High-pass filter the output: y — 7

Multiply with asin(wt)
Low-pass filter to estimate the gradient £ &~ dy /00

» £ <0: asin(wt) and (y —7)
> &> 0: asin(wt) and (y — 1) in phase

9: is the best estimate of 6*
0 ~ 0" when £ =0
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The design parameters

The design challenge lies in deciding the values of:
» a - The amplitude of the perturbation signal
» w - The frequency of the perturbation signal
» wp - The cut-off frequency of the high-pass filter
» w; - The cut-off frequency of the low-pass filter
> k - The integrator gain

General advise: Keep all parameters small!



A simulation example - the performance function
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» Local minimum f (—1) = 1, local maximum f (—3/4) = 261/256
and global minimum f (1) = —

» Simulations performed with w; =w, =1, k= —0.8 and w = 3,
a=0.10r03

» Simulations initialized both at § =0 and § = —1.5



Speed of convergence vs resulting oscillations
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Figure: Simulations performed with perturbation amplitude a = 0.1.
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Figure: Simulations performed with perturbation amplitude a = 0.3.
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Movie time!
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Reaching the global minimum |
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Figure: Estimated gradient over time.
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Reaching the global minimum Il
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Figure: Simulations performed with perturbation amplitude a = 0.1.
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Figure: Simulations performed with perturbation amplitude a = 0.3.



Questions?




Class dismissed!
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