Extremum-seeking Control

Tommi Nylander and Victor Millnert

May 25, 2016

▶ Non-model based real-time optimization

 $^{^1\}text{M.Krsti\'e}$ H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

- ▶ Non-model based real-time optimization
- ▶ When limited knowledge of the system is available
 - E.g. a nonlinear equilibrium map with a local minimum

 $^{^1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

- ▶ Non-model based real-time optimization
- ▶ When limited knowledge of the system is available
 - ▶ E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950s

 $^{^1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

- ▶ Non-model based real-time optimization
- ▶ When limited knowledge of the system is available
 - ▶ E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950s
- Revival with proof of stability ¹

 $^{^1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

- Non-model based real-time optimization
- ▶ When limited knowledge of the system is available
 - ▶ E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950s
- Revival with proof of stability ¹
- Very attractive with the increasing complexity of engineering systems

¹M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

Examples of application

- active flow control
- aeropropulsion
- colling systems
- wind energy
- human exercise machines
- optimizing the control of non-isothermal valve actuator
- timing control of HCCl engine combustion
- formation flight optimization
- beam matching adaptive control
- optimizing bioreactors
- control of beam envelope in particle accelerators

Problem statement

Consider a SISO nonlinear model

$$\dot{x} = f(x, u), \tag{1}$$

$$y = h(x) \tag{2}$$

- $\mathbf{x} \in \mathbb{R}^n$ is the state
- ▶ $u \in \mathbb{R}$ is the input
- ▶ $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}$ are smooth

Problem statement

Consider a SISO nonlinear model

$$\dot{x} = f(x, u), \tag{1}$$

$$y = h(x) \tag{2}$$

- $\triangleright x \in \mathbb{R}^n$ is the state
- ▶ $u \in \mathbb{R}$ is the input
- ▶ $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}$ are smooth

Suppose that we know a control-law

$$u = \alpha(x, \theta) \tag{3}$$

parametrized by a scalar parameter θ .

- assume static state-feedback law
- ightharpoonup assume scalar θ and y,

Problem statement

Consider a SISO nonlinear model

$$\dot{x} = f(x, u), \tag{1}$$

$$y = h(x) \tag{2}$$

- $\mathbf{x} \in \mathbb{R}^n$ is the state
- $u \in \mathbb{R}$ is the input
- ▶ $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ and $h: \mathbb{R}^n \to \mathbb{R}$ are smooth

Suppose that we know a control-law

$$u = \alpha(x, \theta) \tag{3}$$

parametrized by a scalar parameter θ .

- assume static state-feedback law
- ightharpoonup assume scalar θ and y,

The closed-loop system

$$\dot{x} = f(x, \alpha(x, \theta))$$

has equilibria parametrized by θ .

Problem statement - assumptions

Assumption

▶ We have a control law designed for local stabilization. This control law need not be based on modeling knowledge of f(x, u).

Problem statement - assumptions

Assumption

- We have a control law designed for local stabilization. This control law need not be based on modeling knowledge of f(x, u).
- ▶ There exists a $\theta^* \in \mathbb{R}$ such that

$$(h \circ I)'(\theta^*) = 0, \tag{4}$$

$$(h \circ I)''(\theta^*) > 0 \tag{5}$$

▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$
- ▶ Low-pass filter to estimate the gradient $\xi \approx \partial y/\partial \theta$

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$
- ▶ Low-pass filter to estimate the gradient $\xi \approx \partial y/\partial \theta$
 - $\xi < 0$: $a\sin(\omega t)$ and $(y \eta)$ out of phase

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$
- ▶ Low-pass filter to estimate the gradient $\xi \approx \partial y/\partial \theta$
 - $\xi < 0$: $a\sin(\omega t)$ and $(y \eta)$ out of phase
 - $\xi > 0$: $a\sin(\omega t)$ and $(y \eta)$ in phase

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$
- ▶ Low-pass filter to estimate the gradient $\xi \approx \partial y/\partial \theta$
 - $\xi < 0$: $a\sin(\omega t)$ and $(y \eta)$ out of phase
 - $\xi > 0$: $a\sin(\omega t)$ and $(y \eta)$ in phase
- $ightharpoonup \hat{\theta}$ is the best estimate of θ^*

- ▶ Perturb the plant with a *slow* periodic signal $a\sin(\omega t)$
- ▶ High-pass filter the output: $y \eta$
- ▶ Multiply with $a\sin(\omega t)$
- ▶ Low-pass filter to estimate the gradient $\xi \approx \partial y/\partial \theta$
 - $\xi < 0$: $a\sin(\omega t)$ and $(y \eta)$ out of phase
 - $\xi > 0$: $a\sin(\omega t)$ and $(y \eta)$ in phase
- \triangleright $\hat{\theta}$ is the best estimate of θ^*
- $ightharpoonup \hat{ heta} pprox heta^*$ when $\xi=0$

The design challenge lies in deciding the values of:

▶ a - The amplitude of the perturbation signal

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal
- ightharpoonup The cut-off frequency of the high-pass filter

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal
- ightharpoonup The cut-off frequency of the high-pass filter
- ightharpoonup The cut-off frequency of the low-pass filter

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal
- ightharpoonup The cut-off frequency of the high-pass filter
- ightharpoonup The cut-off frequency of the low-pass filter
- ▶ *k* The integrator gain

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal
- ightharpoonup The cut-off frequency of the high-pass filter
- ightharpoonup The cut-off frequency of the low-pass filter
- ▶ *k* The integrator gain

The design challenge lies in deciding the values of:

- ▶ a The amplitude of the perturbation signal
- lacktriangledown The frequency of the perturbation signal
- ightharpoonup The cut-off frequency of the high-pass filter
- ightharpoonup The cut-off frequency of the low-pass filter
- ▶ *k* The integrator gain

General advise: Keep all parameters small!

A simulation example - the performance function

$$f(\theta) = \theta^4 + \theta^3 - 2\theta^2 - 3\theta$$

- ▶ Local minimum f(-1) = 1, local maximum f(-3/4) = 261/256 and global minimum f(1) = -3
- ▶ Simulations performed with $\omega_l = \omega_h = 1$, k = -0.8 and $\omega = 3$, a = 0.1 or 0.3
- ▶ Simulations initialized both at $\theta = 0$ and $\theta = -1.5$

Speed of convergence vs resulting oscillations

Figure: Simulations performed with perturbation amplitude a = 0.1.

Figure: Simulations performed with perturbation amplitude a = 0.3.

Movie time!

Reaching the global minimum I

Figure: High-pass filtered output (blue) and perturbation signal (red).

Figure: Estimated gradient over time.

Reaching the global minimum II

Figure: Simulations performed with perturbation amplitude a = 0.1.

Figure: Simulations performed with perturbation amplitude a = 0.3.

Questions?

Class dismissed!