Gain Scheduling

Bo Bernhardsson and Karl Johan Aström

Department of Automatic Control LTH, Lund University

Gain Scheduling

- What is gain scheduling?
- How to find schedules ?
- Applications
- What can go wrong?
- Some theoretical results
- LPV design via LMIs
- Conclusions

To read:

Leith & Leithead, Survey of Gain-Scheduling Analysis & Design To try out:

Matlab - Gain Scheduling

Gain Scheduling

Example of scheduling variables

- Production rate
- Machine speed, e.g. DVD player
- Mach number and dynamic pressure

How to Find Schedules?

Select scheduling variables: Variable(s) should reflect changes in system dynamics.

Make (linear) control design for different operating conditions: For instance with automatic tuning

Use "closest" control design, or interpolate: Many ad-hoc or theoretically motivated methods exist

Verify performance: Simulations. Some methods exist that guarantee performance; usually conservative though

Scheduling on controller output

Nonlinear Valve

A typical process control loop

Valve characteristics and a crude approximation

Results

Without gain scheduling

Loop is either too slow or unstable

With gain scheduling

Schedule on Process Variable

Schedule on External Variable

Concentration Control

Concentration Control

Performance with changing flow V_d

Variable Sampling Rate

Process model

$$G(s) = \frac{1}{1+sT}e^{-s\tau}, \quad T = \frac{V_m}{q}, \quad \frac{V_d}{q}$$

Sample system with period

$$h = \frac{V_d}{nq}$$

Sampled model becomes linear "time"-invariant

$$c(kh+h) = ac(kh) + (1-a)u(kh-nh), \qquad a = e^{-qh/V_m} = e^{-V_d/(nV_m)}$$

Sampled equation does not depend on q!!

Results

Digital control with h=1/(2q).

The flows are: (a) q=0.5; (b) q=1; (c) q=2

Flight control

Pitch dynamics

Operating conditions

The Pitch Control Channel

Many scheduling variables

Schedule of K_Q wrt airspeed (IAS) and height (H)

Surge Tank Control

A surge tank is used to smooth flow variations. The is allowed will fluctuate substantially but it is important that the tank does not become empty or that it overflows.

The IgeIsta Power Station

Controller structure before modification

Modified controller structure

What can go wrong?

Most designs are done for the time-frozen system, i.e. as if scheduling parameter θ is constant.

Theory and practice: This will work also when $\theta(t)$ is slowly varying. But can go wrong for fast varying parameters.

Following example is from Shamma and Athans, ACC 1991

Shamma - Athans

Resonant system with varying resonance frequency

$$G_{\theta}(s)\frac{1}{s} = \frac{1}{s^2 + 0.2s + 1 + 0.5\theta(t)}\frac{1}{s} = C(sI - A(\theta))^{-1}B$$

with
$$-1 \le \theta(t) \le 1$$

Controller design: LQG + integrator on system input, LQG parameters

$$Q_{11} = C^T C$$
, $Q_{22} = 10^{-8}$, $R_{11} = B_2(\theta) B_2(\theta)^T$, $R_{22} = 10^{-2}$

Gives controller $K_{\theta}(s)$ with good robustness margins when θ constant Frozen-system loop-gain $G_{\theta}(s)K_{\theta}(s)$ is actually independent of θ (using $B_2(\theta)^T=[1 \ 0 \ 1+0.5\theta]$)

Shamma-Athans

Step response and GOF for any constant θ look fine. All θ give the same curves

Shamma-Athans

But if $\theta(t) = \cos(2t)$ the system becomes unstable

It can be shown that the open loop LTV system is unstable in this case.

Several theorems show that " if θ varies slowly" performance for the frozen-system analysis is maintained for the true system

- Small-gain theorem
- Lyapunov theory using $V = x^T P x$ or $V = x^T P(\theta) x$

Gain-scheduling design

Several authors have worked with systematic design methods

- Shamma-Athans
- Packard
- Apkarian-Gahinet
- Helmersson
- ...

Gain-scheduling for LPV systems by LMIs

Apkarian, Gahinet (1995) A Convex Characterization of Gain-Scheduled H_{∞} Controller

Model assumption

$$\dot{x} = A(\theta(t))x(t) + B(\theta(t))u(t)$$

$$y = C(\theta)x(t) + D(\theta(t))u(t)$$

Controller structure

$$\dot{\zeta}(t) = A_K(\theta(t))\zeta(t) + B_K(\theta(t))y(t)$$

$$u(t) = C_K(\theta(t))\zeta(t) + D_K(\theta(t))y(t)$$

Will assume both process and controller depends on θ via a fractional transformation.

Main Idea

Figure 2.1: a) LPV control structure – b) Transformed structure

$$\begin{pmatrix} \tilde{q}_{\theta} & q_{\theta} & q & y & \tilde{w} \end{pmatrix}^T = P_a(s) \begin{pmatrix} \tilde{w}_{\theta} & w_{\theta} & w & u & \tilde{u} \end{pmatrix}^T$$

Main Result - a sufficency condition

The closed loop system is stable for all $\theta(t)$ with $\|\theta(t)\| < 1/\gamma$ and the L_2 induced norm from w to q satisfies

$$\max_{\|\theta(t)\|<1/\gamma^2} \|T_{qw}\| < \gamma$$

if there is a scaling matrix L commuting with Θ so that

$$\|\begin{pmatrix} L^{1/2} & 0 \\ 0 & I \end{pmatrix} F_l(P_a, K) \begin{pmatrix} L^{-1/2} & 0 \\ 0 & I \end{pmatrix} \| < \gamma$$

Sufficient, not necessary

The condition can be checked by an LMI, also gives the controller.

If Time Permits

http://se.mathworks.com/help/control/ug/gain-scheduled-control-of-a-chemical-reactor.html

Summary - Gain Scheduling

Very useful technique

- Linearization of nonlinear actuators
- Surge tank control
- Control over wide operating ranges

Requires good models

Issues to consider

- Choice of scheduling variable(s)
- Granularity of tables, interpolation
- Bumpless parameter changes