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Backpropagation

Write your expression as an expression tree. Compute your objective during a
forward pass. Use chain rule to compute gradient during a backward pass.
For J=max(Wx+ b) we get
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Useful resource: http://www.psi.toronto.edu/~andrew/papers/
matrix_calculus_for_learning.pdf

http://www.psi.toronto.edu/~andrew/papers/matrix_calculus_for_learning.pdf
http://www.psi.toronto.edu/~andrew/papers/matrix_calculus_for_learning.pdf
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Gradient descent

Vanilla gradient descent, also known
as batch gradient descent.

θk+1 = θk − η∇J(θk)
Updates the parameters with gradient
based on the entire data set.

x 0

x 1

x 2

x 3
x 4

*

*



Carl Åkerlindh | DL Training | Gradient descent optimization | Batch 5 / 19

Gradient descent

# gradient descent
for i in 1:num_epochs

grad = eval_grad(loss, data, params)
params = params - learning_rate * grad

end

▶ Can be very slow
▶ Intractable if dataset does not fit in memory
▶ Not possible to perform online
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Stochastic gradient descent

Online version of gradient descent.

θk+1 = θk − η∇J(θk;xj,yj)
Updates the parameters with
approximated gradient based on single
data point.
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Stochastic gradient descent

# stochastic gradient descent
for i in 1:num_epochs

shuffle!(data)
for j in 1:lenght(data)
grad = eval_grad(loss, data[j], params)
params = params - learning_rate * grad

end
end

▶ Usually faster convergence
▶ High variance
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Mini-batch gradient descent

Best of both worlds.

θk+1 = θk − η∇J(θk;xj:j+n,yj:j+n)
Updates the parameters with approximated gradient based on single data
point.



Carl Åkerlindh | DL Training | Gradient descent optimization | Mini-batch 9 / 19

Mini-batch gradient descent

# mini-batch gradient descent
for i in 1:num_epochs

shuffle!(data)
for j in 1:num_batches
batch = get_batch(data, j, batch_size)
grad = eval_grad(loss, batch, params)
params = params - learning_rate * grad

end
end

▶ Faster than batch gradient descent
▶ Reduced variance compared to (online) gradient descent
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Guaranteed convergence ̸= fast convergence

▶ Choosing learning rate is very important, but non-trivial
▶ Pre-defined learning rate schemes can be used, but might not fit all data
sets

▶ Make bigger updates for rarely occurring features, and smaller updates
for more common ones

▶ Local minima and saddle points
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Momentum

Prevents oscillations by accumulating
the momentum of the gradient
updates in the dimensions that does
not change direction and vice versa.

vk+1 = γvk+ η∇J(θk)
θk+1 = θk − vk+1
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Nestrov accelerated gradient

Similar to the momentum method, but evaluates the gradient in an
approximation of the next parameter vector.

vk+1 = γvk+ η∇J(θk − γvk)
θk+1 = θk − vk+1
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Adagrad

Adapts the update of individual
parameters based on their importance.
Let gk+1,i =∇J(θi), the Adagrad
update per parameter is then

θk+1 = θk − ηÆ
Gk,ii − ε

∇J(θk)

where Gk is a diagonal matrix where
each diagonal element Gk,ii is the sum
of squares of all previous gradients
with respect to θi.

Pros and cons
▶ Eliminates need to tune learning
rate manually

▶ Every term added to G is positive,
so eventually the learning rate will
become too small
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Other variants of SGD

▶ Adadelta
▶ RMSprop
▶ Adam



Carl Åkerlindh | DL Training | Gradient descent additions | Additional tricks 15 / 19

Additional tricks

Curriculum learning Shuffling the dataset in the beginning of every
optimization epoch.

Batch normalization Every mini-batch is normalized individually during
training. A post-training step is then applied, where mean and
variance is computed for the whole dataset.

Early stopping Free lunch according to Hinton. During training, compute
error on a validation dataset, if it increases, stop.
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Additional tricks

▶ Layer normalization
▶ Randomly select hyperparameters
▶ Dropout
▶ Gradient noise
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Homework

Implement a training algorithm from scratch for any model introduced in this
course, e.g. Autoencoder, Restricted Boltzmann Machine or Convolutional
Neural Network.
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