
Practical overview of optimization of Deep Networks
Carl Åkerlindh

December 15, 2016

Carl Åkerlindh | DL Training 2 / 19

Gradient descent optimization
Backpropagation
Batch gradient descent
Online gradient descent
Mini-batch gradient descent
Challenges

Gradient descent additions
Momentum
Nestrov accelerated gradient
Adagrad
Other SGD variants
Additional tricks

Homework

References

Carl Åkerlindh | DL Training | Gradient descent optimization | Backpropagation 3 / 19

Backpropagation

Write your expression as an expression tree. Compute your objective during a
forward pass. Use chain rule to compute gradient during a backward pass.
For J=max(Wx+ b) we get

Jmax

0

+

b

*

W

x

Useful resource: http://www.psi.toronto.edu/~andrew/papers/
matrix_calculus_for_learning.pdf

http://www.psi.toronto.edu/~andrew/papers/matrix_calculus_for_learning.pdf
http://www.psi.toronto.edu/~andrew/papers/matrix_calculus_for_learning.pdf

Carl Åkerlindh | DL Training | Gradient descent optimization | Batch 4 / 19

Gradient descent

Vanilla gradient descent, also known
as batch gradient descent.

θk+1 = θk − η∇J(θk)
Updates the parameters with gradient
based on the entire data set.

x 0

x 1

x 2

x 3
x 4

*

*

Carl Åkerlindh | DL Training | Gradient descent optimization | Batch 5 / 19

Gradient descent

gradient descent
for i in 1:num_epochs

grad = eval_grad(loss, data, params)
params = params - learning_rate * grad

end

▶ Can be very slow
▶ Intractable if dataset does not fit in memory
▶ Not possible to perform online

Carl Åkerlindh | DL Training | Gradient descent optimization | Online 6 / 19

Stochastic gradient descent

Online version of gradient descent.

θk+1 = θk − η∇J(θk;xj,yj)
Updates the parameters with
approximated gradient based on single
data point.

Carl Åkerlindh | DL Training | Gradient descent optimization | Online 7 / 19

Stochastic gradient descent

stochastic gradient descent
for i in 1:num_epochs

shuffle!(data)
for j in 1:lenght(data)
grad = eval_grad(loss, data[j], params)
params = params - learning_rate * grad

end
end

▶ Usually faster convergence
▶ High variance

Carl Åkerlindh | DL Training | Gradient descent optimization | Mini-batch 8 / 19

Mini-batch gradient descent

Best of both worlds.

θk+1 = θk − η∇J(θk;xj:j+n,yj:j+n)
Updates the parameters with approximated gradient based on single data
point.

Carl Åkerlindh | DL Training | Gradient descent optimization | Mini-batch 9 / 19

Mini-batch gradient descent

mini-batch gradient descent
for i in 1:num_epochs

shuffle!(data)
for j in 1:num_batches
batch = get_batch(data, j, batch_size)
grad = eval_grad(loss, batch, params)
params = params - learning_rate * grad

end
end

▶ Faster than batch gradient descent
▶ Reduced variance compared to (online) gradient descent

Carl Åkerlindh | DL Training | Gradient descent optimization | Challenges 10 / 19

Guaranteed convergence ̸= fast convergence

▶ Choosing learning rate is very important, but non-trivial
▶ Pre-defined learning rate schemes can be used, but might not fit all data
sets

▶ Make bigger updates for rarely occurring features, and smaller updates
for more common ones

▶ Local minima and saddle points

Carl Åkerlindh | DL Training | Gradient descent additions | Momentum 11 / 19

Momentum

Prevents oscillations by accumulating
the momentum of the gradient
updates in the dimensions that does
not change direction and vice versa.

vk+1 = γvk+ η∇J(θk)
θk+1 = θk − vk+1

Carl Åkerlindh | DL Training | Gradient descent additions | Nestrov accelerated gradient 12 / 19

Nestrov accelerated gradient

Similar to the momentum method, but evaluates the gradient in an
approximation of the next parameter vector.

vk+1 = γvk+ η∇J(θk − γvk)
θk+1 = θk − vk+1

Carl Åkerlindh | DL Training | Gradient descent additions | Adagrad 13 / 19

Adagrad

Adapts the update of individual
parameters based on their importance.
Let gk+1,i =∇J(θi), the Adagrad
update per parameter is then

θk+1 = θk − ηÆ
Gk,ii − ε

∇J(θk)

where Gk is a diagonal matrix where
each diagonal element Gk,ii is the sum
of squares of all previous gradients
with respect to θi.

Pros and cons
▶ Eliminates need to tune learning
rate manually

▶ Every term added to G is positive,
so eventually the learning rate will
become too small

Carl Åkerlindh | DL Training | Gradient descent additions | Other SGD variants 14 / 19

Other variants of SGD

▶ Adadelta
▶ RMSprop
▶ Adam

Carl Åkerlindh | DL Training | Gradient descent additions | Additional tricks 15 / 19

Additional tricks

Curriculum learning Shuffling the dataset in the beginning of every
optimization epoch.

Batch normalization Every mini-batch is normalized individually during
training. A post-training step is then applied, where mean and
variance is computed for the whole dataset.

Early stopping Free lunch according to Hinton. During training, compute
error on a validation dataset, if it increases, stop.

Carl Åkerlindh | DL Training | Gradient descent additions | Additional tricks 16 / 19

Additional tricks

▶ Layer normalization
▶ Randomly select hyperparameters
▶ Dropout
▶ Gradient noise

Carl Åkerlindh | DL Training | Homework 17 / 19

Homework

Implement a training algorithm from scratch for any model introduced in this
course, e.g. Autoencoder, Restricted Boltzmann Machine or Convolutional
Neural Network.

Carl Åkerlindh | DL Training | References 18 / 19

Further reading I

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer Normalization”. In:
arXiv.org (July 2016). arXiv: 1607.06450v1 [stat.ML].
Yoshua Bengio. “Practical Recommendations for Gradient-Based Training of Deep
Architectures”. In: Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 437–478.

Geoffrey E Hinton. “A Practical Guide to Training Restricted Boltzmann Machines”. In:
Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 599–619.

Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: arXiv.org (Feb. 2015). arXiv:
1502.03167v3 [cs.LG].
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Optimization of
Machine Learning Algorithms”. In: Advances in neural information … (2012),
pp. 2951–2959.

http://arxiv.org/abs/1607.06450v1
http://arxiv.org/abs/1502.03167v3

Carl Åkerlindh | DL Training | References 19 / 19

Further reading II

Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: Journal of Machine Learning Research (JMLR) 15 (2014), pp. 1929–1958.

I Sutskever et al. “On the importance of initialization and momentum in deep learning.”
In: ICML (3) (2013).

Tijmen Tieleman. “Training restricted Boltzmann machines using approximations to the
likelihood gradient”. In: the 25th international conference. New York, New York, USA:
ACM Press, 2008, pp. 1064–1071.

	Gradient descent optimization
	Backpropagation
	Batch gradient descent
	Online gradient descent
	Mini-batch gradient descent
	Challenges

	Gradient descent additions
	Momentum
	Nestrov accelerated gradient
	Adagrad
	Other SGD variants
	Additional tricks

	Homework
	References

