History of Real Time Systems

Gautham

Department of Automatic Control, Lund University

Overview

Introduction

1940s

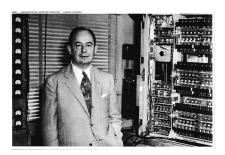
1950s

1960s

RTOS

A look at RTSS

Cloud. The future?

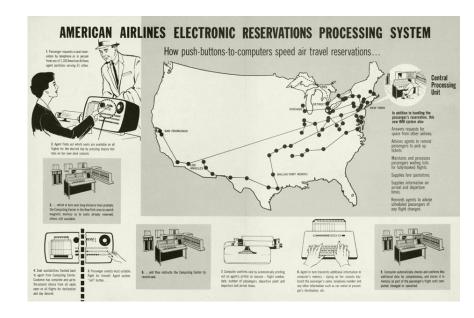

Real Time Systems

- Real Time Systems describes hardware and software systems subject to a "real-time constraint", for example from event to system response.
- ► Is one whose logical correctness depends on the correctness of its outputs as well as their timeliness.¹
- Many contend that all computer systems are real-time. All systems have a response-time.

Historical Survey of Early Real-Time Computing Developments in the U.S.

In the 1940s

- War effort pushed the boundary of technological process.
- Preparation of ballistics tables, aircraft systems, atomic weapons design, fire control, and logistics.
- Von Neumann, Bell labs and MIT were at the forefront.
- Gave rise to project Whirlwind in 1947. Pilot trainer/simulator.Ferrite Core memory - 10 μs access times.incorporated into SAGE air defense system.


In the 1950s

- The race to build faster and energy efficient computers and real-time systems.
- IBM had significant impact on research.
- Their Military Products Division worked on processing centers for SAGE and aiming for B-52 systems.
- The SemiAutomatic Ground Environment(SAGE) air defense system project
 - Maintain up-to-date picture of air and ground situation
 - Control modern weapons rapidly and accurately
 - Present pictures to Air Force
- A real time control, real-time communication and real-time information management system.

continued

- Other Projects include
 - IBM SABRE Electronic reservation system for AA(American Airlines).
 - ▶ IBM Hardware IBM 700 machine series
 - Project Stretch All-transistor computer developed in 1954

Bell Laboratories

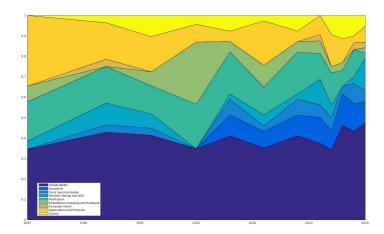
- Involved in the development of Naval gunfire-control system.
- Major involvement is real-time switching system.
- Stored Program Control(SPC) was a big breakthrough in real-time telephone communications.

in the 60s

- Significant non-military research split into computational and commercial interests.
- Industries like petroleum industry and chemical manufacturing used real-time control.
- IBM worked on NASA's real-time computer for manned space program.
- Project Mercury was used to compute spacecraft orbit go/no-go computation in 10 seconds. Project Gemini succeeded Project Mercury.
- Project Apollo was used for tracking of Apollo spacecraft.
- Its successor project space shuttle implemented pinpoint landing data processing and very high flight rate.

RTOS

- IBM's first RTOS, the Basic Executive was developed in 1962. Minimum function, it had interrupt handling and I/O driver support. Succeeded by Executive II in 1963.
- Executive II provided disk residence for user and system programs.
- The third RTOS, FORTRAN Executive, Build the foundation for future high-level languages in real-time system.



A look at RTSS

	Year	Submitted	Accepted	Percentage Accepted
Ì	1986	68	30	44.1
	1992	120	34	28.3
	1997	99	30	30.3
	1998	182	45	24.7
	2000	103	28	27.2
	2002	106	30	28.3
	2004	187	43	22.7
	2006	173	42	25.7
	2008	187	44	23.5
	2010	142	36	25.4
	2012	157	35	22.3
	2013	160	36	22.5
	2015	151	34	22.5

Table: RTSS Statistics

continued

Cloud Control

- Applying control concepts to the cloud is the next big thing.
- Some notable research done at the Department of Automatic Control in Lund.
- Autonomous cloud is a major research area in the WASP project.
- Brownout control, server startup optimization and energy reduction are major challenges.

2

Thank you.

²Chris Watterston.