Session 3

Density functions and sum-of-squares methods

Reading assignment

Check the main results and examples of these papers.

- Rantzer, Systems & Control Letters, 42:3 (2001).
- Prajna/Parrilo/Rantzer, TAC 49:2 (2004).
- SOSTOOLS and its Control Applications, Prajna/P/S/P (2005)

Exercise 3.1

a. Draw a phase plot for the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\epsilon x_1 + x_1^2 - x_2^2 \\ -\epsilon x_2 + 2x_1 x_2 \end{bmatrix}$$

for $\epsilon = 1$.

b. Prove for $\epsilon > 0$ that $\lim_{t\to\infty} x(t) = 0$ for almost all initial states. **c.** What happens for $\epsilon = 0$?

Exercise 3.2

In the lecture slide "Example — Patching nonlinear controllers" we claimed that density functions enable construction of an "almost globally stabilizing" feedback law u(x) that acts as $u_1(x) = -3x_1-6x_2$ for small x and $u_2(x) = x_1-2x_2$ for large x. Complete the construction and find the set of initial states for which $\lim_{t\to\infty} x(t) \neq 0$.

Exercise 3.3

a. Verify that the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -6x_1x_2^2 - x_1^2x_2 + 2x_2^3 \\ x_2u \end{bmatrix}$$

is not asymptotically stabilizable.

b. Find a control law such that $\lim_{t\to\infty} x(t) = 0$ for almost all initial states in the closed loop system. Draw a phase plot.

Exercise 3.4

Error dynamics for an attitude observer in two dimensions can be represented by the same equation as the one used in the lecture

$$\dot{R}(t) = R(t)[R(t)^T - R(t)] + R(t)E(t),$$

but now the orthogonal matrix R(t) is only 2×2 .

a. Give $\epsilon, \delta > 0$ such that $\limsup_{t\to\infty} ||R(t) - I|| < \delta$ for almost all initial conditions when $E(t) = -E(t)^T$ is a constant matrix with norm smaller than ϵ .

b. What if E(t) is not constant?