
Nonlinear Control Theory 2017

L1 Nonlinear phenomena and Lyapunov theory
L2 Absolute stability theory, dissipativity and IQCs
L3 Density functions and computational methods
L4 Piecewise linear systems, jump linear systems
L5 Relaxed dynamic programming and Q-learning
L6 Controllability and Lie brackets
L7 Synthesis: Exact linearization, backstepping, forwarding

Exercise sessions:
Solve 50% of problems in advance, or make hand-in later.

Mini-project:
(4-5 days) Study and present topic related to your research.

Written take-home exam.

L2: Absolute stability, dissipativity and IQCs

○ Absolute Stability Theory

○ Dissipativity theory

○ Integral Quadratic Constraints

○ Examples

○ Dissipativity from IQCs

○ Toolbox

Literature.
On IQCs: Megretski/Rantzer, IEEE TAC 42:6 (1997)
On dissipativity: Willems, Archive Rational Mech.Anal. 45:5 (1972)
See also course web page.

Stability and Performance of Complex Systems Absolute Stability Theory
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For what G(s) and f (⋅) is the closed-loop system stable?

◮ Lur’e and Postnikov’s problem (1944)
◮ Aizerman’s conjecture (1949) (False!)
◮ Kalman’s conjecture (1957) (False!)
◮ Solution by Popov (1960) (Led to the Circle Criterion)

The Circle Criterion
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Theorem.
Let y= G(s)u and u = − f (y) + r. Assume G(s) is stable and
0 < α ≤ f (y)

y ≤ β < ∞. If G(iω ) does not encircle the disc
defined by −1/α and −1/β , then the closed-loop is BIBO
stable from r to y.
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Dissipativity

The nonlinear system
{

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t)).

is said to be dissipative with respect to the supply rate r(u, y) if
there exists a storage function S(x) ≥ 0 such that

S(x(t0)) +
∫ t1

t0

r(u(t), y(t))dt ≥ S(x(t1))

Interconnection

Suppose

ẋ1 = f1(x1, u1) ẋ2 = f2(x2, u2)

are dissipative with supply rates r1(u1, x1) and r2(u2, x2) and
storage functions S(x1), S(x2). Then

{
ẋ1 = f1(x1, h2(x2))
ẋ2 = f2(x2, h1(x1))

is dissipative with respect to the supply rate

τ1r1(h2(x2), x1) + τ2r2(h1(x1), x2) τ1,τ2 ≥ 0

and storage function

τ1S1(x1) + τ2S2(x2)
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Storage and Lyapunov functions

For a system without input, suppose that

r(y) ≤ −kpxpc

for some k > 0. Then the dissipation inequality implies

S(x(t0)) −
∫ t1

t0

kpx(t)pcdt ≥ S(x(t1))

which is an integrated form of the Lyapunov inequality

d
dt

S(x(t)) ≤ −kpxpc

Example—Capacitor
A capacitor

i = C
du
dt

is dissipative with respect to the supply rate r(t) = i(t)u(t).
A storage function is

S(u) = Cu2

2

In fact

Cu(t0)2
2

+
∫ t1

t0

i(t)u(t)dt = Cu(t1)2
2

Mini-problem:
Give a disspation inequality for an inductor v = L di

dt .
What about an RLC circuit?

Memoryless Nonlinearity

The memoryless nonlinearity y= φ(u) with sector condition

α ≤ φ(v)/v ≤ β

is dissipative with respect to the quadratic supply rate

r(u, y) = −[y−α u][y− β u]

with storage function

S " 0

The Kalman-Yakubovich-Popov lemma

Given A, B and M = M T , with iω I − A nonsingular for ω ∈ R,the
following statements are equivalent.

(i) For all ω ∈ [0,∞] it holds that
[
(iω I − A)−1 B

I

]∗
M

[
(iω I − A)−1 B

I

]
≺ 0

(ii) There exists a symmetric matrix P ∈ Rn$n such that

M +
[

AT P+ PA PB
BT P 0

]
≺ 0

Note that if P 4 0, then (ii) means that the linear system
ẋ = Ax + Bu is disspative with respect to the storage function xT Px
and supply rate −

[
xT uT

]
M

[
xT uT

]T .

The Circle Criterion Revisited

Theorem.
Let y= G(s)u and u = − f (y) + r. Assume G(s) is stable and
0 < α ≤ f (y)

y ≤ β < ∞. If G(iω ) does not encircle the disc
defined by −1/α and −1/β , the closed-loop is BIBO stable.

Proof using dissipativity argument.
The frequency condition on G(s) = C(sI − A)−1 B means (by
the KYP lemma) that ẋ = Ax + Bu, y= Cx is dissipative with
storage function xT Px and supply rate [y−α u][y− β u] − ǫpxp2.

At the same time, the nonlinearlíty y= φ(u) is dissipative with
storage function zero and supply rate −[y−α u][y− β u].
Adding the the two inequalities shows that the interconnected
system ẋ = A− B f (Cx) satisfies d

dt xT Px ≤ −ǫpxp2.
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Integral Quadratic Constraint

∆ ✲✲ ∆vv

The (possibly nonlinear) operator ∆ on Lm
2 [0,∞) is said to

satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω )
(̂∆v)(iω )

]∗

Π(iω )
[

v̂(iω )
(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2[0,∞).

∆ structure Π(iω ) Condition

∆ passive
[

0 I
I 0

]

q∆(iω )q ≤ 1
[

x(iω )I 0
0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]
[

X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0

Y = −Y∗

δ (t) ∈ [−1, 1]
[

X Y
YT −X

]

∆(s) = e−θ s − 1
[

x(iω )ρ(ω )2 0
0 −x(iω )

]
ρ(ω ) =

2 maxpθ p≤θ 0 sin(θω/2)
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IQC Stability Theorem

G(s)

τ ∆

❝
❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆
satisfies the IQC defined by Π(iω ). If

[
G(iω )

I

]∗
Π(iω )

[
G(iω )

I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

Proof steps

Step 1 Verify existence of C > 0 such that

pvp ≤ Cpv− τ G∆vp ∀v ∈ Ll
2[0,∞),τ ∈ [0, 1]

Step 2 Show that if (I − τ G∆)−1 is bounded for some
τ ∈ [0, 1], then (I −ν G∆)−1 is bounded for all ν in
an interval around τ . The size of the interval
depends on C, but not on τ .

Step 3 Starting from τ = 0, prove by induction
boundedness for all τ ∈ [0, 1].

Stability Verification Using IQCs

G(s)

τ ∆

❝
❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and let ∆ be causal.

Collect (for example from comuputer library) a set of weights
Π1(iω ), . . . , ΠN(iω ) corresponding to IQCs satisfied by τ ∆.

Use convex optimization to find τ1, . . . ,τ N ≥ 0 such that

[
G(iω )

I

]∗ N∑

k=1

τ kΠk(iω )
[

G(iω )
I

]
< 0 for ω ∈ [0,∞].

The feedback system is input/output stable if solution is found.

Miniproblem: How do you state the optimization problem?

Performance Verification using “S-procedure”

The inequality

σ 0(h) ≤ 0

follows from the inequalities

σ 1(h) ≥ 0, . . . ,σ n(h) ≥ 0

if there exist τ1, . . . ,τ n ≥ 0 such that

σ 0(h) +
∑

k

τ kσ k(h) ≤ 0 ∀h

S-procedure losslessness by Megretsky/Treil

Let σ 0,σ 1, . . . ,σ n : Lm
2 → R be continuous time-invariant

quadratic forms and let L ⊂ Lm
2 be a time-invariant subspace.

Suppose that there exists f∗ ∈ L such that σ k( f∗) > 0 for
k = 1, . . . , m. Then the following statements are equivalent

(i) σ 0( f ) ≤ 0 for all f such that σ 1( f ) > 0, . . . ,σ n( f ) > 0.

(ii) There exist τ1, . . . ,τ n ≥ 0 such that

σ 0( f ) +
∑

k

τ kσ k( f ) ≤ 0 ∀ f ∈ L.

Mini-problem.
1. Is (i) \ (ii) when σ 0, . . . ,σ n are linear forms on Rm?
2. Is (i) \ (ii) when σ 0, . . . ,σ n are quadratic forms on Rm?

Proof of S-procedure losslessness

Define

K = {(σ 0( f ),σ 1( f ), . . . ,σ n( f ))}
K0 = {(x0, x1, . . . , xn) : x0 > 0, x1 > 0, . . . , xn > 0}

The statement ı is that K ∩ K0 = ∅. For f ∈ L, define fτ ∈ L
by fτ (s) = f (s− τ ) for s > τ . The closure K̄ of the set K is
convex, because

lim
τ→∞

σ
(� + fτ

√
2

)
= lim

τ→∞
1
2
(σ (�) +σ ( fτ )) = 1

2
(σ (�) +σ ( f ))

Hence ı implies existence of a hyperplane in Rn+1 separating
K0 and K̄ . This implies (ii) .

The opposite implication is trivial.
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Example — Oscillations due to Stiction

❝❝✲ ✲1
s

1
sPID ✲✲✲ ✲❄

✻

✛

θ
θ̇f

u
r = 1 d

0 50 100 150 200

0.8

0.9

1

1.1

1.2

1.3

d(t) = θ (t) − 1

u(t) = −K
(

Tdḋ(t) + d(t) + 1
Ti

∫ t

0
d(τ )dτ

)

θ̈ (t) = u(t) − stic(θ̇ (t))
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Integrator Leakage Removes Oscillations

❝❝✲ ✲1
s

1
sPID ✲✲✲ ✲❄

✻

✛

θ
θ̇f

u
r = 1 d

0 50 100 150 200
0.8

0.9

1

1.1

1.2

1.3

Controller

u(t) = −K
(

Tdḋ(t) + d(t) + 1
Ti

∫ t

0
eǫ(τ−t)d(τ )dτ

)

We will use integral quadratic constraints to quantify the
leakage level ǫ needed to remove oscillations.

Passivity not enough for stiction analysis

❝❝✲ ✲1
s

1
sPID ✲✲✲ ✲❄

✻

✛

θ
θ̇f

u
r

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

G( jω )

❝✲✲ 1
s

✲G(iω )

✛

❄F(iω ) ✲✲

θ̇f

r θ− G(s) = s(s+ǫ)
(sT+1)(s2+2ζ ω 0s+ω 2

0)

Zames/Falb’s IQC for Saturations





f (t) = −1 if v(t) < −1
f (t) = v(t) if v(t) ∈ [−1, 1]
f (t) = 1 if v(t) > 1

Zames/Falb’s property

0 ≤
∫ ∞

0
[v(t) − f (t)][ f (t) + (h ∗ f )(t)]dt,

∫ ∞

−∞
ph(t)pdt ≤ 1

0 ≤
∫ ∞

−∞

[
v̂
f̂

]∗ [ 0 1+ H(−iω )
1+ H(iω ) −2(1+ Re H(iω ))

] [
v̂
f̂

]
dω

IQC’s for Stiction

−1
−1− δ

v

w = φ(v)
1

1+ δ
w





φ(v) ∈ [−1− δ ,−1] if v < 0
φ(v) ∈ [−1− δ , 1+ δ ] if v = 0
φ(v) ∈ [1, 1+ δ ] if v > 0

Integral Quadratic Constraints:
∫ ∞

0
v(t) [(1+ δ )φ(t) + (h ∗ φ)(t)] dt ≥ 0,

∫ ∞

−∞
ph(t)pdt ≤ 1

Stiction Stability Theorem

For G(s) stable and proper and φ satisfying the conditions on
the previous slide, consider the interconnection

{
v = Gw+ f
w = φ(v) + e

Assume well-posedness all τ ∈ [0, 1]. If there exists H ∈ RL∞
with qHqL1 ≤ 1 and

Re [G(iω ) (1+ δ + H(iω ))] > 0, ω ∈ [0,∞]

then the interconnection is stable.

Integrator Leakage ǫ > δ /T Removes Oscillations

❝❝✲ ✲1
s

1
sPID ✲✲✲ ✲❄

✻

✛

θ
θ̇f

u
r = 1 d

0 50 100 150 200
0.8

0.9

1

1.1

1.2

1.3

Controller

u(t) = −K
(

Tdḋ(t) + d(t) + 1
Ti

∫ t

0
eǫ(τ−t)d(τ )dτ

)

Characteristic Polynomial

(Ts+ 1)(s2 + 2ζ ω 0s+ω 2
0)

Leakage ǫT > δ Removes Stiction Oscillations

Let 1 > ǫT > δ and H(iω ) = (1+δ )(ǫT+1)
−iω T+1 . Then

qHqL1 = (1+ δ )(1− ǫT) < 1− δ 2 < 1

Re[G(1+ δ + H)] = (1+ δ )Re
[

G
(

1+ ǫT − 1
−iω T + 1

)]

= T(1+ δ )(ω 2 + ǫ2)
ω 2T2 + 1

Re
G(iω T + 1)

iω + ǫ

= T(1+ δ )(ω 2 + ǫ2)
ω 2T2 + 1

Re
iω

−ω 2 + i2ζ ω 0ω +ω 0
> 0
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Recall IQC Stability Theorem

G(s)

∆

❝
❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and ∆ causal. For all τ ∈ [0, 1],
suppose the loop is well posed and

0 ≤
∫ ∞

−∞

[
v̂(iω )

(̂τ ∆v)(iω )

]∗

Π(iω )
[

v̂(iω )
(̂τ ∆v)(iω )

]
dω ∀v

0 ≻
[

G(iω )
I

]∗
Π(iω )

[
G(iω )

I

]
∀ω

then the feedback system is input/output stable.

Case 1: Constant Weight

G(s)

∆

❝
❝

✛✛

✲✲

❄

✻

Forget τ for a moment. The inequalities can be written

0 ≤
∫ ∞

−∞

[
v̂(iω )
(̂∆v)(iω )

]∗

M

[
v̂(iω )
(̂∆v)(iω )

]
dω

0 ≻
[

G(iω )
I

]∗
M

[
G(iω )

I

]

Case 1: Constant Weight

G(s)

∆

❝
❝

✛✛

✲✲

❄

✻

Rewrite using Parseval’s formula and the KYP Lemma:

0 ≤
∫ ∞

0

[
v

∆(v)

]∗
M

[
v

∆(v)

]
dt

0 ≻
[

C 0
0 I

]T

M
[

C 0
0 I

]
+
[

AT P+ PA PB
BT P 0

]

Case 1: Constant Weight

G(s)

∆

❝
❝

✛✛

✲✲

❄

✻

Multiply the second inequality with (x, w) from right and left

0 ≤
∫ ∞

0

[
v

∆(v)

]T

M
[

v
∆(v)

]
dt

0 ≻
[

v
w

]T

M
[

v
w

]
+ d

dt
xT Px

Case 1: Constant Weight

G(s)

∆

❝
❝

✛✛

✲✲

❄

✻

Assume the IQC is “hard” (holds on finite intervals) and P ≻ 0:

0 ≤
∫ T

0

[
v

∆(v)

]∗
M

[
v

∆(v)

]
dt

0 >
∫ T

0

[
v
w

]T

M
[

v
w

]
dt+ x(T)T Px(T) − x(0)T Px(0)

The second inequality proves dissipativity of the linear part.
Adding the first inequality shows that P is a Lypaunov function.

Mini-problem:
The assumptions hold for certain classes of M . Which ones?

Case 2: Frequency Dependent Weight

In the general case Π(iω ) can be factorized as

Π(iω ) = Ψ(iω )∗MΨ(iω ) (⋆)

and the KYP Lemma is a applied to an extended state
realization involving both the states of G and the states of Ψ.
Again, assuming that

Π(iω ) =
[

Π11(iω ) Π12(iω )
Π21(iω ) Π22(iω )

]

with Π11(iω ) ≻ 0 and Π22(iω ) ≺ 0 it is possible to prove1 that
the factorization (⋆) can be made to get a valid hard IQC and
P ≻ 0. Hence the system is dissipative with a storage function
that is quadratic in the extended state.

1Seiler IEEE TAC 60:6 (2015)
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A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s

1

Integrator1
s

1

Integrator

-K-

Gain2

-1

Gain1

10

Gain

Simulations show stability.

The circle criterion can prove stability.

But what if the feedback controller induces time delays?
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A library of analysis objects

1

Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector
sat-int

Popov

popov IQC

polytope with
restrict rate

polytope

performance

odd slope nonlinearity

norm bounded

monotonic with 
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(-ds)-1

cdelay

(s-1)

s(s+1)

Zero-Pole

1

s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State-Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1

In

The IQC toolbox

 Exp(-ds)-1

uncertain delay

performance

monotonic with 
restrict rate

2s  +2s+12

0.01s  +s+.012

Controller

s

1

s

1
10

>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple q-forms: 7

Solving with 62 decision variables ...

ans = 4.7139

Verification by IQCs

IQCs prove stability below the lower line.

An analysis model in text format

❡✲ ✲ ✲

��

−10s2

s3+2s2+2s+1

✛

❄e(t) y(t)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

G(iω )

G = tf([10 0 0],[1 2 2 1]);
e = signal;
w = signal;
y = -G*(e+w);
w==iqc_monotonic(y);

iqc_gain_tbx(e,y)
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