Nonlinear Control Theory 2017 L2: Absolute stability, dissipativity and IQCs

L1 Nonlinear phenomena and Lyapunov theory o Absolute Stability Theory
L2 Absolute stability theory, dissipativity and IQCs
L3 Density functions and computational methods
L4 Piecewise linear systems, jump linear systems o Integral Quadratic Constraints
L5 Relaxed dynamic programming and Q-learning
L6 Controllability and Lie brackets

o Dissipativity theory

o Examples

L7 Synthesis: Exact linearization, backstepping, forwarding o Dissipativity from IQCs

Exercise sessions: o Toolbox

Solve 50% of problems in advance, or make hand-in later.

Mini-project: . Literature.

(4-5 days) Study and present topic related to your research. On IQCs: Megretski/Rantzer, IEEE TAG 42:6 (1997)

Written take-home exam. On dissipativity: Willems, Archive Rational Mech.Anal. 45:5 (1972)

See also course web page.
Stability and Performance of Complex Systems Absolute Stability Theory
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y

For what G (s) and f(-) is the closed-loop system stable?

» Lur'e and Postnikov’s problem (1944)

» Aizerman’s conjecture (1949) (False!)

» Kalman’s conjecture (1957) (False!)

» Solution by Popov (1960) (Led to the Circle Criterion)
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Theorem.

Lety = G(s)u and u = —f(y) + r. Assume G(s) is stable and
0<a< %y) < B < oo. If G(iw) does not encircle the disc

defined by —1/a and —1/ 3, then the closed-loop is BIBO o Toolbox
stable from r to y.

o Dissipativity from IQCs

Dissipativity Interconnection

Suppose

The nonlinear system &1 = fi(xn,u) %2 = fa(x2,u2)

{3

is said to be dissipative with respect to the supply rate r(u,y) if
there exists a storage function S(x) > 0 such that

are dissipative with supply rates r1(x1,x1) and rqo(ug, x2) and
storage functions S(x1), S(x2). Then

%1 = f1(x1, ha(x2))
%2 = fa(x2,h1(x1))

is dissipative with respect to the supply rate

fF(x(8),u(?)
h(x(2), u(?))-

S(x(to))+/tt1r(U(t),y(t))dt 2z S(x(t1))

7171 (he(x2), x1) + Tora(h1(x1), x2) 71,72 2 0
and storage function

rlsl(xl) + 1282(x2)




Storage and Lyapunov functions

For a system without input, suppose that
r(y) < —klx|°
for some & > 0. Then the dissipation inequality implies
Stete) — [ (O > S(x(0)
0
which is an integrated form of the Lyapunov inequality

d c
SS(e) < —hls]

Example—Capacitor

A capacitor
g
7
is dissipative with respect to the supply rate r(¢) = i(¢)u(¢).
A storage function is

In fact

u 2 t1 u 2
¢ (Zt") + /t iu(dt = € (Ztl)

Mini-problem: )
Give a disspation inequality for an inductor v = L.
What about an RLC circuit?

Memoryless Nonlinearity

The memoryless nonlinearity y = ¢(u) with sector condition
a<o@)/v<p
is dissipative with respect to the quadratic supply rate
r(wy) = —ly—oau]ly— pu]

with storage function

The Kalman-Yakubovich-Popov lemma

Given A, B and M = MT, with iwI — A nonsingular for @ € R,the
following statements are equivalent.

(i) Forallw € [0, 00] it holds that

{ (o] —IA)*lB }M[ (iol —IA)*lB ] < 0

(i1) There exists a symmetric matrix P € R"*" such that

ATP+PA PB

M+[ BTP 0

| <o

Note that if P > 0, then (i) means that the linear system
i = Ax + Bu is disspative with respect to the storage function x” Px
and supply rate — [x7  u”] M [x” uT}T.

The Circle Criterion Revisited

Theorem.

Lety = G(s)u and u = —f(y) + r. Assume G(s) is stable and
0<a< @ < B < 0. If G(iw) does not encircle the disc
defined by —1/a and —1/ 3, the closed-loop is BIBO stable.

Proof using dissipativity argument.
The frequency condition on G(s) = C(sI — A)~1B means (by
the KYP lemma) that x = Ax + Bu, y = Cx is dissipative with

storage function x” Px and supply rate [y — au][y — Bu] — ¢|x|?.

At the same time, the nonlinearlity y = ¢(u) is dissipative with
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storage function zero and supply rate —[y — au|[y — Bu]. o Toolbox
Adding the the two inequalities shows that the interconnected
system & = A — B f(Cx) satisfies $xTPx < —e|x|2.
Integral Quadratic Constraint
A structure (i) Condition
v Av 0 I
: A passive { I 0 }
The (possibly nonlinear) operator A on Li*[0, co) is said to lAGw)] <1 [ x(ig))[ 0 7 } x(iw) >0
satisfy the IQC defined by T if —x (i)
. * . - X(iw) Y(io) X=X*>0
| u(io) ‘ (i) 6 €[-1.1] { Y(io) —X(io) Y =-v
— . Hiw) | —,. do >0
oo | (AV)(i@) (Av)(iw) x v
5(t) € [1.1] o %
for all v € Lg[0, c0).

A(s) = e % —1 [x(iw)é)(wV _x?iw)] plw) =

2 max|g|<p, sin(0®/2)




IQC Stability Theorem

TA

L

G(s)

:

Let G(s) be stable and proper and let A be causal.

For all 7 € [0, 1], suppose the loop is well posed and 7A
satisfies the IQC defined by I1(iw). If

%

[ G(;w) ]H(iw) [ G(;‘w) } <0 forw e [0,00]

then the feedback system is input/output stable.

Proof steps

Step 1 Verify existence of C > 0 such that

[v] < Clv —7GAv| Vv e L§[0,00),7 € [0,1]

Step 2 Show that if (I — tGA)~! is bounded for some
7 € [0,1], then (I — vGA)~! is bounded for all v in
an interval around 7. The size of the interval
depends on C, but not on 7.

Step 3 Starting from ¢ = 0, prove by induction
boundedness for all 7 € [0, 1].

Stability Verification Using IQCs

‘ TA

G(s)

Let G(s) be stable and proper and let A be causal.

Collect (for example from comuputer library) a set of weights
I1; (i), ..., IIn(iw) corresponding to IQCs satisfied by 7A.

Use convex optimization to find 74,...,7x > 0 such that
Glio) |" & G(iw)
[ ; ] 3 alli(io) [ ; } <0 forme [0,0).
k=1

The feedback system is input/output stable if solution is found.
Miniproblem: How do you state the optimization problem?

Performance Verification using “S-procedure”

The inequality
oo(h) <0
follows from the inequalities
o1(h) >0,...,0n(h) >0
if there exist 71,...,7, > 0 such that

oo(h) + Z 7,0,(h) <0 VA
&

S-procedure losslessness by Megretsky/Treil

Let 0y,01,...,0, : LY — R be continuous time-invariant
quadratic forms and let L C L3 be a time-invariant subspace.
Suppose that there exists f. € L such that o (f.) > 0 for
k=1,...,m. Then the following statements are equivalent

(7)) oo(f) <O0forall fsuchthatoi(f)>0,...,0.(f) > 0.

(i7) There exist 71,...,7, > 0 such that

oo(f)+ > mor(f) <0  VfeL
k

Mini-problem.
1. Is (i) < (i) when oy, ...,0, are linear forms on R™?
2. Is (i) ¢ (it) when oy, ..., o, are quadratic forms on R™?

Proof of S-procedure losslessnhess

Define

K = {(O-O(f)761(f)’~ .. 76n(f))}

Ko = {(x0,%1,...,2) : 29 > 0,21 > 0,...,x, > 0}

The statement 1 is that K N Ko = &. For f € L, define ff € L
by f7(s) = f(s—7) for s > 7. The closure K of the set K is
convex, because

T
lim0'<g+f ) = lim1
T—00 \/é T—00

Hence 1 implies existence of a hyperplane in R**! separating
Ko and K. This implies (i) .

(6(9) +0(F) = 3 (0(a) +(F))

The opposite implication is trivial.
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Example — Oscillations due to Stiction

u(t)= —K <Tdd(t) +d(t) +Tli/0td(r)dr>
6(t) = u(t) — stic(d(t))




Integrator Leakage Removes Oscillations

0 10 10 20

Controller

u(t)= —K (Tdd(t) +d(t) + % /0 t ef(f*t)d(r)dr>

Passivity not enough for stiction analysis

)

s(s+e)
We will use integral quadratic constraints to quantify the G(s) = (sT+1)(s2+2L wos+w?)
leakage level ¢ needed to remove oscillations.
Zames/Falb’s 1QC for Saturations 1QC’s for Stiction
w
e w = ¢(v)

fe)=-1 ifo(t)<-1
{ f(@)=v(t) ifv(t)e[-1,1]
fiey=1 if () > 1

Zames/Falb’s property

0< /O°° [o(2) — FOIFE) + (b= £)(®)]dt, /_:lh(t)ldt <1

1+ H(—iw) } {a

°</OO H Lﬂg(iw) _2(1+ Re H(iw)) f]d“’

op(v) € [-1-6,-1] ifv <0
{ p(v)e[-1-6,1+8] ifv=0
#(v) € [1,1+47] ifv>0

Integral Quadratic Constraints:

/va(t) (1+8)9(t) + (R =9)(®)]dt > O, /700 |h(t)ldt <1

Stiction Stability Theorem

For G(s) stable and proper and ¢ satisfying the conditions on
the previous slide, consider the interconnection

L

Assume well-posedness all 7 € [0, 1]. If there exists H € RL
with [|H||r, <1 and

Gw+ f
o(v)+e

Re[G(iw) (1+6 + H(in))] >0, o € [0,00]

then the interconnection is stable.

Integrator Leakage ¢ > 5 /T Removes Oscillations

0 100 150 200

Controller

u(t)= —K <Tdd(t) +d(t) +

L (1)
E(T—
T /0 e d(r)dr)

(Ts +1)(s% + 2 wos + wl)

Characteristic Polynomial

Leakage <T' > 6 Removes Stiction Oscillations

Let1> ¢T > & and H(iw) = HTH) Then

|H|L, =(14+8)(1—-eT)<1-6%<1

Re[G(1+6 + H)] = (1+6)Re {G (” %ﬂ

_ T(1+46)(w?+€?) . G(iwT +1)
B ®2T2 4+ 1 io+e
T(1+68)(w? + €2) io

@02T?2 +1

" >
—0? +i2{ Wy + wg
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Recall 1QC Stability Theorem

g

Let G(s) be stable and proper and A causal. For all 7 € [0,1],
suppose the loop is well posed and

<[ gliow) | o(io)
o</ { (o)) } e { (edo)(io) } ©o
0> { G(;“’) ]*H(iw) [ G(;"") } Vo

then the feedback system is input/output stable.

Case 1: Constant Weight

Hi

Forget 7 for a moment. The inequalities can be written

o[ Hiw) | (i)
05/_00{@)0@} M[@)(iw)}d“’

0> [ G(IiCO) TM [ G(Iiw)}

Case 1: Constant Weight

G(s)r

Rewrite using Parseval’s formula and the KYP Lemma:

o< [ Mv)} » {A(Uv)} @

T T
C 0} M{C O]_'_{A P+PA PB

0>{0 I 01 BTP 0

Case 1: Constant Weight

Multiply the second inequality with (x,w) from right and left

o< [ [sta] 4 [uio]

Case 1: Constant Weight

=g

G(s)

Assume the IQC is “hard” (holds on finite intervals) and P > 0:

o< [ [uial #[aio]

T T
0> / H M H dt + x(T)" Px(T) — x(0)" Px(0)
o W w
The second inequality proves dissipativity of the linear part.

Adding the first inequality shows that P is a Lypaunov function.

Mini-problem:
The assumptions hold for certain classes of M. Which ones?

Case 2: Frequency Dependent Weight

In the general case I1(iw) can be factorized as
Miw) =¥Y(io)* MY (i) (*)

and the KYP Lemma is a applied to an extended state
realization involving both the states of G and the states of W.
Again, assuming that

. Hu(iﬂ)) le(iCO)
I(iw) = . .

(0) = 11, (i0) Tlss(io)
with T11; (i) > 0 and Iy (i) < O it is possible to prove! that
the factorization (x) can be made to get a valid hard IQC and
P > 0. Hence the system is dissipative with a storage function
that is quadratic in the extended state.

'Seiler IEEE TAC 60:6 (2015)
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A servo with friction

Gain2  Saturation

25242541
01s2+s

Sum Gain Suml  Integrator Integratorl, Scope

Transfer Fen

Gainl

Simulations show stability.
The circle criterion can prove stability.

But what if the feedback controller induces time delays?




A library of analysis objects

The 1QC toolbox

OO
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Demux
b

encapsulated deadzone

odd siope nonlineari
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e

HEs
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Exp(-ds)}1 p

harmonic slope noniinearty

encapsulated odd deadzone

monotonic with
restrict rate

performance

252+2s5+1
0.0152+s+.01

Controller

Exp(-ds)-1

uncertain delay

>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...
scalar inputs: 65
states: 10
simple g-forms: 7

Solving with 62 decision variables ...

ans = 4.7139

Verification by IQCs

25
20
15
£
]
o
10 unstable
ks
5 X
o)
6] 0.2 04 06 08 1
delay bound

IQCs prove stability below the lower line.

An analysis model in text format
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e g

G(ia

—10s?
$34+252+2s+1

G = tf([10 0 01,1 2 2 11);
e = signal;

w = signal;

y = -Gx(etw);
w==iqc_monotonic(y);

igc_gain_tbx(e,y)
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Toolbox




