Nonlinear Control Theory 2017

- L1 Nonlinear phenomena and Lyapunov theory
- L2 Absolute stability theory, dissipativity and IQCs
- L3 Density functions and computational methods
- L4 Piecewise linear systems, jump linear systems
- L5 Relaxed dynamic programming and Q-learning
- L6 Controllability and Lie brackets
- L7 Synthesis: Exact linearization, backstepping, forwarding

Exercise sessions:

Solve 50% of problems in advance, or make hand-in later.

Mini-project:

(4-5 days) Study and present topic related to your research.

Written take-home exam.

Stability and Performance of Complex Systems

The Circle Criterion

Theorem.

Let y = G(s)u and u = -f(y) + r. Assume G(s) is stable and $0 < \alpha \leq \frac{f(y)}{y} \leq \beta < \infty$. If $G(i\omega)$ does not encircle the disc defined by $-1/\alpha$ and $-1/\beta$, then the closed-loop is BIBO stable from r to y.

Dissipativity

The nonlinear system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = h(x(t), u(t)). \end{cases}$$

is said to be *dissipative* with respect to the *supply rate* r(u, y) if there exists a *storage function* $S(x) \ge 0$ such that

$$S(x(t_0)) + \int_{t_0}^{t_1} r(u(t), y(t)) dt \ge S(x(t_1))$$

L2: Absolute stability, dissipativity and IQCs

- Absolute Stability Theory
- Dissipativity theory
- Integral Quadratic Constraints
- Examples
- Dissipativity from IQCs
- Toolbox

Literature.

On IQCs: Megretski/Rantzer, IEEE TAC 42:6 (1997) On dissipativity: Willems, Archive Rational Mech.Anal. 45:5 (1972) See also course web page.

Absolute Stability Theory

For what G(s) and $f(\cdot)$ is the closed-loop system stable?

- Lur'e and Postnikov's problem (1944)
- Aizerman's conjecture (1949) (False!)
- Kalman's conjecture (1957) (False!)
- Solution by Popov (1960) (Led to the Circle Criterion)

L2: Absolute stability, dissipativity and IQCs

- Absolute Stability Theory
- Dissipativity theory
- Integral Quadratic Constraints
- Examples
- Dissipativity from IQCs
- Toolbox

Interconnection

Suppose

$$\dot{x}_1 = f_1(x_1, u_1)$$
 $\dot{x}_2 = f_2(x_2, u_2)$

are dissipative with supply rates $r_1(u_1,x_1)$ and $r_2(u_2,x_2)$ and storage functions $S(x_1), S(x_2)$. Then

$$\begin{cases} \dot{x}_1 = f_1(x_1, h_2(x_2)) \\ \dot{x}_2 = f_2(x_2, h_1(x_1)) \end{cases}$$

is dissipative with respect to the supply rate

$$\tau_1 r_1(h_2(x_2), x_1) + \tau_2 r_2(h_1(x_1), x_2) \qquad \tau_1, \tau_2 \ge 0$$

and storage function

$$\tau_1 S_1(x_1) + \tau_2 S_2(x_2)$$

Storage and Lyapunov functions

For a system without input, suppose that

$$r(y) \le -k|x|^c$$

for some k > 0. Then the dissipation inequality implies

$$S(x(t_0)) - \int_{t_0}^{t_1} k |x(t)|^c dt \ge S(x(t_1))$$

which is an integrated form of the Lyapunov inequality

$$\frac{d}{dt}S(x(t)) \le -k|x|^c$$

Memoryless Nonlinearity

The memoryless nonlinearity $y = \phi(u)$ with sector condition

$$\alpha \le \phi(v)/v \le \beta$$

is dissipative with respect to the quadratic supply rate

$$r(u, y) = -[y - \alpha u][y - \beta u]$$

with storage function

 $S \equiv 0$

The Circle Criterion Revisited

Theorem.

Let y = G(s)u and u = -f(y) + r. Assume G(s) is stable and $0 < \alpha \leq \frac{f(y)}{y} \leq \beta < \infty$. If $G(i\omega)$ does not encircle the disc defined by $-1/\alpha$ and $-1/\beta$, the closed-loop is BIBO stable.

Proof using dissipativity argument.

The frequency condition on $G(s) = C(sI - A)^{-1}B$ means (by the KYP lemma) that $\dot{x} = Ax + Bu$, y = Cx is dissipative with storage function $x^T Px$ and supply rate $[y - \alpha u][y - \beta u] - \epsilon |x|^2$. At the same time, the nonlinearlify $y = \phi(u)$ is dissipative with

storage function zero and supply rate $-[y - \alpha u][y - \beta u]$.

Adding the the two inequalities shows that the interconnected system $\dot{x} = A - Bf(Cx)$ satisfies $\frac{d}{dt}x^T Px \le -\epsilon |x|^2$.

Integral Quadratic Constraint

The (possibly nonlinear) operator Δ on $L_2^m[0,\infty)$ is said to satisfy the IQC defined by Π if

$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \widehat{v}(i\omega) \\ (\widehat{\Delta v})(i\omega) \end{array} \right]^* \Pi(i\omega) \left[\begin{array}{c} \widehat{v}(i\omega) \\ (\widehat{\Delta v})(i\omega) \end{array} \right] d\omega \ge 0$$

for all $v \in \mathbf{L}_2[0,\infty)$.

Example—Capacitor

A capacitor

$$i = C \frac{di}{dt}$$

is dissipative with respect to the supply rate r(t) = i(t)u(t). A storage function is

In fact

$$rac{Cu(t_0)^2}{2} + \int_{t_0}^{t_1} i(t)u(t)dt = rac{Cu(t_1)^2}{2}$$

 $S(u) = \frac{Cu^2}{2}$

Mini-problem: Give a disspation inequality for an inductor $v = L\frac{di}{dt}$. What about an RLC circuit?

The Kalman-Yakubovich-Popov lemma

Given A, B and $M = M^T$, with $i\omega I - A$ nonsingular for $\omega \in \mathbf{R}$, the following statements are equivalent.

(*i*) For all $\omega \in [0, \infty]$ it holds that

$$\left[\begin{array}{c} (i\omega I-A)^{-1}B\\I\end{array}\right]^*M\left[\begin{array}{c} (i\omega I-A)^{-1}B\\I\end{array}\right]\ \prec\ 0$$

(*ii*) There exists a symmetric matrix $P \in \mathbf{R}^{n \times n}$ such that

$$M + \left[\begin{array}{cc} A^T P + P A & P B \\ B^T P & 0 \end{array} \right] \prec 0$$

Note that if $P \succeq 0$, then (*ii*) means that the linear system $\dot{x} = Ax + Bu$ is disspative with respect to the storage function $x^T P x$ and supply rate $-\begin{bmatrix} x^T & u^T \end{bmatrix} M \begin{bmatrix} x^T & u^T \end{bmatrix}^T$.

L2: Absolute stability, dissipativity and IQCs

- Absolute Stability Theory
- Dissipativity theory
- Integral Quadratic Constraints
- Examples
- Dissipativity from IQCs
- Toolbox

Δ structure	$\Pi(i\omega)$	Condition
Δ passive	$\left[\begin{array}{cc} 0 & I \\ I & 0 \end{array}\right]$	
$\ \Delta(i\omega)\ \leq 1$	$\left[egin{array}{cc} x(i\omega)I & 0 \ 0 & -x(i\omega)I \end{array} ight]$	$x(i\omega) \ge 0$
$\delta \in [-1,1]$	$\left[egin{array}{cc} X(i\omega) & Y(i\omega) \ Y(i\omega)^* & -X(i\omega) \end{array} ight]$	$\begin{array}{l} X=X^*\geq 0\\ Y=-Y^* \end{array}$
$\delta(t) \in [-1,1]$	$\left[\begin{array}{cc}X&Y\\Y^T&-X\end{array}\right]$	
$\Delta(s)=e^{-\theta s}-1$	$\left[egin{array}{cc} x(i\omega) ho(\omega)^2 & 0 \ 0 & -x(i\omega) \end{array} ight]$	$ ho(\omega) = 2 \max_{ heta \leq heta_0} \sin(heta \omega/2)$

IQC Stability Theorem

Let G(s) be stable and proper and let Δ be causal.

For all $\tau\in[0,1],$ suppose the loop is well posed and $\tau\Delta$ satisfies the IQC defined by $\Pi(i\omega).$ If

$$\begin{bmatrix} G(i\omega) \\ I \end{bmatrix}^* \Pi(i\omega) \begin{bmatrix} G(i\omega) \\ I \end{bmatrix} < 0 \quad \text{for } \omega \in [0,\infty]$$

then the feedback system is input/output stable.

Stability Verification Using IQCs

Let G(s) be stable and proper and let Δ be causal.

Collect (for example from computer library) a set of weights $\Pi_1(i\omega), \ldots, \Pi_N(i\omega)$ corresponding to IQCs satisfied by $\tau\Delta$.

Use convex optimization to find $au_1,\ldots, au_N\geq 0$ such that

$$\left[\begin{array}{c}G(i\omega)\\I\end{array}\right]^*\sum_{k=1}^N\tau_k\Pi_k(i\omega)\left[\begin{array}{c}G(i\omega)\\I\end{array}\right]<0\quad\text{for }\omega\in[0,\infty].$$

The feedback system is input/output stable if solution is found. **Miniproblem:** How do you state the optimization problem?

S-procedure losslessness by Megretsky/Treil

Let $\sigma_0, \sigma_1, \ldots, \sigma_n : \mathbf{L}_2^m \to \mathbf{R}$ be continuous time-invariant quadratic forms and let $L \subset \mathbf{L}_2^m$ be a time-invariant subspace. Suppose that there exists $f_* \in L$ such that $\sigma_k(f_*) > 0$ for $k = 1, \ldots, m$. Then the following statements are equivalent

- (*i*) $\sigma_0(f) \leq 0$ for all f such that $\sigma_1(f) > 0, \dots, \sigma_n(f) > 0$.
- (*ii*) There exist $\tau_1, \ldots, \tau_n \ge 0$ such that

$$\sigma_0(f) + \sum_k \tau_k \sigma_k(f) \le 0 \qquad \forall f \in L.$$

Mini-problem.

1. Is (*i*) \Leftrightarrow (*iii*) when $\sigma_0, \ldots, \sigma_n$ are linear forms on \mathbb{R}^m ? 2. Is (*i*) \Leftrightarrow (*iii*) when $\sigma_0, \ldots, \sigma_n$ are quadratic forms on \mathbb{R}^m ?

L2: Absolute stability, dissipativity and IQCs

• Absolute Stability Theory

- Dissipativity theory
- Integral Quadratic Constraints

• Examples

- Dissipativity from IQCs
- Toolbox

Proof steps

Step 1 Verify existence of C > 0 such that

 $|v| \leq C |v - \tau G \Delta v| \quad \forall v \in \mathbf{L}_2^l[0,\infty), \tau \in [0,1]$

Step 2 Show that if $(I - \tau G \Delta)^{-1}$ is bounded for some $\tau \in [0, 1]$, then $(I - \nu G \Delta)^{-1}$ is bounded for all ν in an interval around τ . The size of the interval depends on *C*, but not on τ .

Step 3 Starting from $\tau = 0$, prove by induction boundedness for all $\tau \in [0, 1]$.

Performance Verification using "S-procedure"

The inequality

$$\sigma_0(h) \leq 0$$

follows from the inequalities

$$\sigma_1(h) \ge 0, \ldots, \sigma_n(h) \ge 0$$

if there exist $\tau_1, \ldots, \tau_n \ge 0$ such that

$$\sigma_0(h) + \sum_k au_k \sigma_k(h) \leq 0 \qquad orall h$$

Proof of S-procedure losslessness

Define

$$K = \{(\sigma_0(f), \sigma_1(f), \dots, \sigma_n(f))\}$$

$$K_0 = \{(x_0, x_1, \dots, x_n) : x_0 > 0, x_1 > 0, \dots, x_n > 0\}$$

The statement i is that $K \cap K_0 = \emptyset$. For $f \in L$, define $f^{\mathfrak{r}} \in L$ by $f^{\mathfrak{r}}(s) = f(s - \tau)$ for $s > \tau$. The closure \overline{K} of the set K is convex, because

$$\lim_{\tau \to \infty} \sigma\left(\frac{g+f^{\tau}}{\sqrt{2}}\right) = \lim_{\tau \to \infty} \frac{1}{2} \left(\sigma(g) + \sigma(f^{\tau})\right) = \frac{1}{2} \left(\sigma(g) + \sigma(f)\right)$$

Hence I implies existence of a hyperplane in \mathbf{R}^{n+1} separating K_0 and \bar{K} . This implies (*ii*).

The opposite implication is trivial.

Example — Oscillations due to Stiction

$$\begin{split} d(t) &= \theta(t) - 1\\ u(t) &= -K \left(T_d \dot{d}(t) + d(t) + \frac{1}{T_i} \int_0^t d(\tau) d\tau \right)\\ \ddot{\theta}(t) &= u(t) - \operatorname{stic}(\dot{\theta}(t)) \end{split}$$

Integrator Leakage Removes Oscillations

Controller

$$u(t) = -K\left(T_d\dot{d}(t) + d(t) + rac{1}{T_i}\int_0^t e^{\epsilon(au-t)}d(au)d au
ight)$$

We will use *integral quadratic constraints* to quantify the leakage level ϵ needed to remove oscillations.

Zames/Falb's IQC for Saturations

$$\left\{ \begin{array}{ll} f(t) = -1 & \text{if } v(t) < -1 \\ f(t) = v(t) & \text{if } v(t) \in [-1,1] \\ f(t) = 1 & \text{if } v(t) > 1 \end{array} \right.$$

Zames/Falb's property

$$\begin{split} &0 \leq \int_0^\infty \left[v(t) - f(t) \right] [f(t) + (h * f)(t)] dt, \qquad \int_{-\infty}^\infty |h(t)| dt \leq 1 \\ &0 \leq \int_{-\infty}^\infty \left[\hat{v} \right]^* \begin{bmatrix} 0 & 1 + H(-i\omega) \\ 1 + H(i\omega) & -2(1 + \operatorname{Re} H(i\omega)) \end{bmatrix} \begin{bmatrix} \hat{v} \\ \hat{f} \end{bmatrix} d\omega \end{split}$$

Stiction Stability Theorem

For G(s) stable and proper and ϕ satisfying the conditions on the previous slide, consider the interconnection

$$\begin{cases} v = Gw + f \\ w = \phi(v) + e \end{cases}$$

Assume well-posedness all $\tau\in[0,1].$ If there exists $H\in{\bf RL}_\infty$ with $\|H\|_{{\bf L}_1}\leq 1$ and

$$\operatorname{Re}\left[G(i\omega)\left(1+\delta+H(i\omega)\right)\right]>0,\quad\omega\in\left[0,\infty\right]$$

then the interconnection is stable.

Leakage $\epsilon T > \delta$ Removes Stiction Oscillations

Let
$$1 > \epsilon T > \delta$$
 and $H(i\omega) = \frac{(1+\delta)(\epsilon T+1)}{-i\omega T+1}$. Then

$$\|H\|_{\mathbf{L}_1} = (1+\delta)(1-\epsilon T) < 1-\delta^2 < 1$$
Re $[G(1+\delta+H)] = (1+\delta) \operatorname{Re}\left[G\left(1+\frac{\epsilon T-1}{-i\omega T+1}\right)\right]$

$$= \frac{T(1+\delta)(\omega^2+\epsilon^2)}{\omega^2 T^2+1} \operatorname{Re}\frac{G(i\omega T+1)}{i\omega+\epsilon}$$

$$= \frac{T(1+\delta)(\omega^2+\epsilon^2)}{\omega^2 T^2+1} \operatorname{Re}\frac{i\omega}{-\omega^2+i2\zeta\omega_0\omega+\omega_0} > 0$$

Passivity not enough for stiction analysis

IQC's for Stiction

$$\left\{ \begin{array}{ll} \phi(v)\in [-1-\delta,-1] & \text{if } v<0\\ \phi(v)\in [-1-\delta,1+\delta] & \text{if } v=0\\ \phi(v)\in [1,1+\delta] & \text{if } v>0 \end{array} \right.$$

Integral Quadratic Constraints:

$$\int_0^\infty v(t) \left[(1+\delta)\phi(t) + (h*\phi)(t) \right] dt \ge 0, \qquad \int_{-\infty}^\infty |h(t)| dt \le 1$$

Integrator Leakage $\epsilon > \delta/T$ Removes Oscillations

Controller

$$u(t) = -K\left(T_d\dot{d}(t) + d(t) + rac{1}{T_i}\int_0^t e^{\epsilon(au-t)}d(au)d au
ight)$$

Characteristic Polynomial

$$(Ts+1)(s^2+2\zeta\omega_0s+\omega_0^2)$$

L2: Absolute stability, dissipativity and IQCs

- Absolute Stability Theory
- Dissipativity theory
- Integral Quadratic Constraints
- Examples
- Dissipativity from IQCs
- Toolbox

Recall IQC Stability Theorem

Let G(s) be stable and proper and Δ causal. For all $\tau \in [0,1],$ suppose the loop is well posed and

$$0 \leq \int_{-\infty}^{\infty} \left[\frac{\hat{v}(i\omega)}{(\tau \Delta v)(i\omega)} \right]^* \Pi(i\omega) \left[\frac{\hat{v}(i\omega)}{(\tau \Delta v)(i\omega)} \right] d\omega \quad \forall v$$
$$0 \succ \left[\begin{array}{c} G(i\omega)\\ I \end{array} \right]^* \Pi(i\omega) \left[\begin{array}{c} G(i\omega)\\ I \end{array} \right] \quad \forall \omega$$

then the feedback system is input/output stable.

Case 1: Constant Weight

Rewrite using Parseval's formula and the KYP Lemma:

$$0 \leq \int_{0}^{\infty} \begin{bmatrix} v \\ \Delta(v) \end{bmatrix}^{*} M \begin{bmatrix} v \\ \Delta(v) \end{bmatrix} dt$$
$$0 \succ \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix}^{T} M \begin{bmatrix} C & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} A^{T}P + PA & PB \\ B^{T}P & 0 \end{bmatrix}$$

Case 1: Constant Weight

Assume the IQC is "hard" (holds on finite intervals) and $P \succ 0$:

$$0 \leq \int_0^T \begin{bmatrix} v \\ \Delta(v) \end{bmatrix}^* M \begin{bmatrix} v \\ \Delta(v) \end{bmatrix} dt$$
$$0 > \int_0^T \begin{bmatrix} v \\ w \end{bmatrix}^T M \begin{bmatrix} v \\ w \end{bmatrix} dt + x(T)^T P x(T) - x(0)^T P x(0)$$

The second inequality proves dissipativity of the linear part. Adding the first inequality shows that P is a Lypaunov function.

Mini-problem:

The assumptions hold for certain classes of M. Which ones?

L2: Absolute stability, dissipativity and IQCs

- Absolute Stability Theory
- Dissipativity theory
- Integral Quadratic Constraints
- Examples
- Dissipativity from IQCs
- Toolbox

Case 1: Constant Weight

Forget τ for a moment. The inequalities can be written

$$0 \leq \int_{-\infty}^{\infty} \left[\begin{array}{c} \widehat{v}(i\omega) \\ (\overline{\Delta v})(i\omega) \end{array} \right]^{*} M \left[\begin{array}{c} \widehat{v}(i\omega) \\ (\overline{\Delta v})(i\omega) \end{array} \right] d\alpha$$
$$0 \succ \left[\begin{array}{c} G(i\omega) \\ I \end{array} \right]^{*} M \left[\begin{array}{c} G(i\omega) \\ I \end{array} \right]$$

Case 1: Constant Weight

Multiply the second inequality with (x, w) from right and left

$$0 \le \int_0^\infty \begin{bmatrix} v \\ \Delta(v) \end{bmatrix}^T M \begin{bmatrix} v \\ \Delta(v) \end{bmatrix} dt$$
$$0 \succ \begin{bmatrix} v \\ w \end{bmatrix}^T M \begin{bmatrix} v \\ w \end{bmatrix} + \frac{d}{dt} x^T P x$$

Case 2: Frequency Dependent Weight

In the general case $\Pi(i\omega)$ can be factorized as

$$\Pi(i\omega) = \Psi(i\omega)^* M \Psi(i\omega)$$

(*)

and the KYP Lemma is a applied to an extended state realization involving both the states of G and the states of Ψ . Again, assuming that

$$\Pi(i\omega) = \begin{bmatrix} \Pi_{11}(i\omega) & \Pi_{12}(i\omega) \\ \Pi_{21}(i\omega) & \Pi_{22}(i\omega) \end{bmatrix}$$

with $\Pi_{11}(i\omega) > 0$ and $\Pi_{22}(i\omega) < 0$ it is possible to prove¹ that the factorization (*) can be made to get a valid hard IQC and P > 0. Hence the system is dissipative with a storage function that is quadratic in the extended state.

¹Seiler IEEE TAC 60:6 (2015)

A servo with friction

Simulations show stability.

The circle criterion can *prove* stability.

But what if the feedback controller induces time delays?

