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Control and stabilization

Problem: Given functions f (x) and �(x) find u(x) such that
the differential equation

ẋ = f (x) + �(x)u(x)

has a globally asymptotically stable equilibrium in x = 0.

Unfortunately, the search for (V , u) such that

�V
�x
[ f + �u] < 0

is non-convex and difficult.

Non-connected set of Lyapunov functions

Every continuous stabilizing control law u(x) for the system
[

ẋ1
ẋ2

]
=

[
[u(x) − 3x1](x2)2/pxp2

u(x)

]

must have the property that u(x) has constant sign along the
half line x1 > 0, x2 = 0. Zero crossing would create a second
equilibrium. A Lyapunov function satisfies

0 > ∇V ⋅ f (x, u) = �V
�x2

u(x) for x1 > 0, x2 = 0

so also �V/�x2 must have constant non-zero sign along the
same half line.

u1(x) = −3x1 − 6x2 is stabilizing with V1(x) = x2
1 + x2

2 + x1x2.
u2(x) = x1 − 2x2 is stabilizing with V2(x) = x2

1 + x2
2 − x1x2.
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A criterion for almost global attractivity

Given ẋ(t) = f (x(t)), where f ∈ C1(Rn, Rn) and f (0) = 0,
suppose there exists a non-negative ρ ∈ C1(Rn \ {0}, R)
with ρ(x) f (x)/pxp integrable on {x ∈ Rn : pxp ≥ 1} and

[∇ ⋅ (ρ f )](x) > 0 for almost all x ,= 0

Then, for almost all initial states x(0) the trajectory x(t)
tends to zero as t →∞.

Proof idea

For x0 ∈ Rn, let φ t(x0) for t ≥ 0 be the solution x(t) of

dx
dt
= f (x) x(0) = x0

Liouville’s theorem gives
∫

φ t(Z)
ρ(x)dx −

∫

Z
ρ(z)dz =

∫ t

0

∫

φτ (Z)
[∇ ⋅ (ρ f )] (x)dxdτ

Every invariant set outside a neighbohood of zero must be of
measure zero.

Z
φ t(Z)

Example

[
ẋ1
ẋ2

]
=

[
−2x1 + x2

1 − x2
2

−6x2 + 2x1x2

]
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The system has four equilibria (0, 0), (2, 0) and (3,±
√

3).
Let ρ(x) = pxp−4. Then

[∇ ⋅ (ρ f )](x) = 16x2
2pxp−6

Exceptional Trajectories: The three unstable equilibria, the axis
x2 = 0, x1 ≥ 2 and the stable manifold of the equilibrium (2, 0),
that spirals out from the equilibria (3,±

√
3).

A Converse Theorem

Let f ∈ C2(Rn, Rn) and f (x)/pxp bounded and suppose that
x = 0 is a stable equilibrium of the system ẋ = f (x). Then, the
following two conditions are equivalent.

◮ For almost all initial states x(0) the solution x(t) tends to
zero as t →∞.

◮ There exists a non-negative ρ ∈ C1(Rn \ {0}, R) which is
integrable outside a neighborhood of zero and such that

[∇ ⋅ ( f ρ)](x) > 0 for almost all x
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From Lyapunov function to density function

Let V (x) > 0 for x ,= 0 and

∇V ⋅ f < α−1(∇ ⋅ f )V

for some α > 0. Then ρ(x) = V (x)−α satisfies
[∇ ⋅ (ρ f )](x) > 0.

In particular, if P is a positive definite matrix satisfying

AT P+ PA < (α−1 trace A)P

then ρ(x) = (xT Px)−α can be used.

Example — PLL with two integrators

sin(⋅)
−

e s+ 1
s

1
s

θ in θoutθ̇out

d2e
dt2 = − sin e− cos e

de
dt

Tools for almost global
stability needed!

Example — PLL with two integrators

[
ė
ẏ

]
= f (e, y) =

[
y

− sin e− ycos e

]

ρ(e, y) = 1
ψ
= 1

y2 + 2− 2 cos e+ ysin e
≥ 0

(∇ ⋅ f ρ) = ρ2(1− cos e)2 ≥ 0

A warning example (by David Angeli)

Consider a pendulum with damping
[

ẋ
ẏ

]
= f (x, y) =

[
y

− sin x − y

]

A density function proving almost global attractivity must satisfy

0 ≤ ∇ ⋅ ( f ρ) = ρ(∇ ⋅ f ) + ρ̇ 0 ≤ ρ

For the pendulum ∇ ⋅ f = −1 ≤ 0 everywhere.

Hence ρ̇ ≥ 0 everywhere, with equality at unstable equilibria.

In particular, ρ = 0 on the stable manifold of the unstable
(upright) equilibrium! This makes it virtually impossible to find ρ
by numerical optimization.
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Convex Control Synthesis

The search for (V , u) such that

�V
�x
[ f + �u] < 0

is difficult

The search for (ρ, u) such that

∇ ⋅ [( f + �u)ρ] > 0

is convex in the pair (ρ, uρ)

If ∇ ⋅ [( f + �uk)ρk] > 0 for k = 1, 2, then
∇ ⋅ [( f + �u)(ρ1 + ρ2)] > 0 for u = (ρ1u1 + ρ2u2)/(ρ1 + ρ2).

Example — Patching nonlinear controllers

[
ẋ1
ẋ2

]
=

[
[u(x) − 3x1](x2)2/pxp2

u(x)

]

Each of the controllers u1(x) = −3x1 − 6x2 and
u2(x) = x1 − 2x2 gives global stability. Corresponding density
functions are

ρ1(x) = (x2
1 + x2

2 + x1x2)−α 1 ρ2(x) = (x2
1 + x2

2 − x1x2)−α 2

with α 1 and α 2 are sufficiently large. For α 1 > α 2

u(x) = ρ1(x)u1(x) + ρ2(x)u2(x)
ρ1(x) + ρ2(x)

acts as u1(x) for small x and as u2(x) for large x.

Example — Swing-up of inverted pendulum

Dynamics and energy
[

ẋ
ẏ

]
= fu(x, y) =

[
y

sin x + u cos x

]
E = y2/2+ cos x − 1
Ė = uycos x

The feedback uE = −ycos xE steers towards the right energy.

ρ0(x, y) = 1
E2 ∇ ⋅ ( fuE ρ0) =

cos2 x
E2

(
y2

2
+ 1− cos x

)
≥ 0

x ’ = y                                       
y ’ = sin(x) - y cos(x)  (y /2 + cos(x) - 1)
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Example — Swing-up
The controller uL(x, y) = −2 sin(x) − 2y is locally stabilizing
with Lyapunov function
V (x, y) = 8 sin(x/2)2 + (2 sin(x/2) + y)2. With

ρE =
1

E2 +max(0, 1− x2 − y2) ρL = max(0, V (x, y)−1 − 100)

u(x, y) = ρL

ρE + ρL
uL(x, y) + ρE

ρE + ρL
uE(x, y)

the pendulum swings up for almost all initial conditions.
Phase plots with smoothened max-operator:

x ’ = y                                                            
y ’ = sin(x) - cos(x) (y cos(x) E rE + 2 (y + sin(x)) rL)/(rE + rL)

rE = 1/(y /2 + cos(x) - 1 + mx(1 - x  - y
rL = 100 mx(.01/(2 x x + (x + y) ) - 1)

E = y /2 + cos(x) - 1
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x ’ = y                                                       
y ’ = sin(x) - cos(x) (y cos(x) E rE + 2 (y + x) rL)/(rE + rL)

rE = 1/(y /2 + cos(x) - 1 + mx(1 - x  - y
rL = 100 mx(.01/(2 x x + (x + y) ) - 1)

E = y /2 + cos(x) - 1
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Linear Programming Duality

min
x

cT x = max
λ

bT λ

b ≤ Ax c ≥ AT λ
x ≥ 0 λ ≥ 0

Optimal transportation in a graph

V0

V1

V2

V3

l31

l32

l21

l10

l20

Minimize l31ρ31 + l32ρ32 + l21ρ21 + l10ρ10 + l20ρ20
subject to ρ31, . . . , ρ20 ≥ 0

ρ31 + ρ32 ≥ 1
−ρ31 − ρ21 + ρ10 ≥ 1
−ρ32 + ρ21 + ρ20 ≥ 1

Dual gives lower bounds

V0

V1

V2

V3

l31

l32

l21

l10

l20

Maximize V1 + V2 + V3
subject to V3 − V1 ≤ l31 V0 = 0

V3 − V2 ≤ l32
...
V2 − V0 ≤ l20

What do we learn from the graph problem?

◮ Two dual view-points
◮ ρ gives an explicit control law
◮ V gives a bound on the achievable cost

◮ Value iteration
◮ Decentralized computations
◮ Level set propagation

Linear Quadratic Gaussian Control

Consider the dynamics

xk+1 = Axk + Buk +wk

Let wk be white noise, independent of xk, with covariance W.
Find a feedback law

uk = −Lxk

that minimizes the stationary covariance E

{[
xk
uk

]T

M
[

xk
uk

]}

Duality in linear quadratic control

The optimal cost has two dual expressions:

max
P

trace(PW) = min
Q

trace(QM)

where the maximization over P ∈ Rn$n is such that
[

AT

BT

]
P
[
A B

]
−
[

P 0
0 0

]
+ M 4 0

and the minimization over Q ∈ R(n+m)$(n+m) is such that

[
A B

]
Q
[

AT

BT

]
−
[
I 0

]
Q
[

I
0

]
+ W 5 0

Notice: Q has an interpretation of the form Q = E

{[
x
u

] [
x
u

]T
}

3



What do we learn from the linear case?

The duality is analogous to the graph problem:

◮ Q gives an explicit control law L = Q21Q−1
11

◮ P gives a bound on the achievable cost

Duality in nonlinear control
For ẋ =∑

i ui(x) fi(x) let V ∗(x0) = infu
∑

i
∫∞

0 ui(x)li(x)dt.
Then

sup
V

∫

X
ψ (x)V (x)dx =

∫

X
ψ (x)V ∗(x)dx = inf

ρi

∑

i

∫

X
li(x)ρi(x)dx

where sup is taken over non-negative V with

∇V ⋅ fi + li ≥ 0
V (0) = 0

and inf is over ρi with ρi > 0 and
∑

i

∇ ⋅ ( fi(x)ρi(x)) ≥ ψ (x)

(Density functions ρi correspond to control laws ui = ρi/
∑

i ρi)

L3: Density functions and computational methods

○ Lyapunov Stabilization Computationally Untractable

○ Density Functions

○ “Almost” Stabilization Computationally Convex

○ Duality Between Cost and Flow

• Sum-of-squares Optimization

○ Example: Attitude observer for rigid body

Verify Positivty of a Polynomial

Does the polunomial

x2y2 + y2 − 2xy− 4y+ 5

take negative values?

No, because

x2y2 + y2 − 2xy− 4y+ 5 = (xy− 1)2 + (y− 2)2

How do we check if a polynomial can be written as a sum of
squares?

Sum-of-squares Decomposition

To check if 2x4 + 5y4 − x2y2 + 2x3y can be written as a sum of
squares, note that




x2

y2

xy






q11 q12 q13
q12 q22 q23
q13 q23 q33




︸ ︷︷ ︸
Q




x2

y2

xy




= q11x4 + q22y4 + (q33 + 2q12)x2y2 + 2q13x3y+ 2q23xy3

Use convex optimization to find Q ≻ 0 subject ot the constraints
that q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q13 = 2, 2q23 = 0.
Factorizing Q = LT L with

L = 1√
2

[
2 −3 1
0 1 3

]

gives 2x4 + 5y4 − x2y2 + 2x3y= 1
2 (2x2 − 3y2 + xy)2 + 1

2(y2 + 3xy).

From LMIs to SOS

Linear Matrix Inequalities (LMIs): Optimization with constraints
that certain quadratic forms must be non-negative:

Minimize c1u1 + ⋅ ⋅ ⋅+ cnun
subject to A0 + u1 A1 + ⋅ ⋅ ⋅+ un An 4 0

Sum-of-squares (SOS): Optimization with constraints that
certain polynomials must be sums of squares:

Minimize c1u1 + ⋅ ⋅ ⋅+ cnun
subject to A0 + u1 A1(x) + ⋅ ⋅ ⋅+ un An(x) is a sum of squares.
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Example: Numerical control synthesis

ρ(x) = a(x)
b(x)α u(x)ρ(x) = c(x)

b(x)α

∇ ⋅ [ρ( f + �u)] = 1
bα+1 [b∇ ⋅ ( f a+ �c) −α∇b ⋅ (a f + �c)]

Select b(x) as a quadratic Lyapunov function for a locally
stabilizing controller.

Numerically computed control law

{
ẋ = y− x3 + x2 + u
ẏ= x + 4u

Based on local analysis near (x, y) = (0, 0), we choose

b(x, y) = 3x2 + 2xy+ 2y2

Let a(x, y) be a constant and put α = 4 to satisfy the
integrability condition on f ρ.

Solving the inequality for c(x, y) using SOSTOOLS gives

u(x, y) = c(x, y)
a(x, y) = −0.38x − 0.16y− 0.043y3

The stabilized system





ẋ = y− x3 + x2 + u
ẏ= x + 4u
u = −0.38x − 0.16y− 0.043y3

x ’ = y - x  + x  + u
y ’ = 4 u + x          

u = - .38 x - .16 y - .043 y
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Example: Attitude observer for a rigid body

The estimated attitude relative to the true attitude of a rigid
body can be described by a matrix R(t) which is orthogonal:
R(t)T R(t) = I. The estimate is correct when R(t) = I.

Consider an observer with error dynamics

Ṙ(t) = kR(t)[R(t)T − R(t)] + R(t)E(t)

where E(t) represents measurement noise. The condition
E(t) = −E(t)T guarantees that R(t) stays orthogonal.

A Lyapunov Argument for Exact Measurements

For E = 0, the Lyapunov function V (R) = 1
2qR − Iq2 satisfies

V ∈ [0, 4] and

d
dt

V (R(t)) = −k
2
qR(t) − R(t)Tq2

An orthogonal 3$ 3 matrix R(t) ,= I can be symmetric only if it
has two eigenvalues at −1, that is when V (R) takes its
maximal value 4.

Hence the Lyapunov function is strictly decreasing once V < 4.
This proves almost global stability of the equilibrium R = I.

Density functions for observer dynamics

Analyzing Ṙ = f (R) with the density function ρ where

f (R) = kR(RT − R) ρ(R) = 1
qI − Rq4

gives

∇ ⋅ (ρ f ) = 2k
qI − Rq4 > 0

so

lim
t→∞

R(t) = I

for almost all initial states R(0).

Notice: Strict inequality gives robustness to measurement noise

5



Theorem on Rigid Body Observer

If qE(t)q ≤ ǫ <
√

6k then almost all solutions to

Ṙ(t) = kR(t)[R(t)T − R(t)] + R(t)E(t)

converge towards a ball around the identity matrix I with radius
√

4− 4
√

1− ǫ2/(8k2)

[Vasconcelos/Rantzer/Silvestre/Oliveira, IEEE TAC, 56:11 (2011)]
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