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Control and stabilization

Problem: Given functions f(x) and g(x) find u(x) such that
the differential equation

% = f(x) + g(x)u(x)

has a globally asymptotically stable equilibrium in x = 0.

Unfortunately, the search for (V,u) such that
ov
- 0
ac L Haul <

is non-convex and difficult.

Non-connected set of Lyapunov functions

Every continuous stabilizing control law u(x) for the system

M _ {[u(x) — 3] (x2)?/ | f?

XQ u(x)

must have the property that u(x) has constant sign along the
half line x; > 0, xo = 0. Zero crossing would create a second
equilibrium. A Lyapunov function satisfies
v
0>VV-f(x,u):aTu(x) forx; >0,x0=0
2

so also 9V /9xs must have constant non-zero sign along the
same half line.

u1(x) = —3x1 — 6xy is stabilizing with Vy(x) = x2 + x2 + x1%.
ug(x) = x1 — 2xy is stabilizing with Vy(x) = x% + x% — X1X9.
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A criterion for almost global attractivity

Given x(t) = f(x(¢)), where f € C(R*,R") and f(0) = 0,
suppose there exists a non-negative p € C}(R"* \ {0},R)
with p(x) f(x)/|x| integrable on {x € R" : |x| > 1} and

[V (pHl(x) >0

Then, for almost all initial states x(0) the trajectory x(t)
tends to zero as ¢t — oo.

for almost all x # 0

5 8 8 & @

Proof idea

For xo € R, let ¢;(x) for ¢ > 0 be the solution x(¢) of

dx

i f(x) x(0) = xo

Liouville’s theorem gives

/{;ﬁ(z)P(x)dx—/%p(z)dz=/:/I(Z) (V- (pf)] (x)dxdz

Every invariant set outside a neighbohood of zero must be of
measure zero.

Example

X1 _ |—2x1+ x% — x%
Xo| — | —6xg + 2x1x9

The system has four equilibria (0,0), (2,0) and (3,£+/3).
Let p(x) = |x|~%. Then

[V (pF)](x) = 163|x|°

Exceptional Trajectories: The three unstable equilibria, the axis
x9 = 0, x1 > 2 and the stable manifold of the equilibrium (2, 0),
that spirals out from the equilibria (3, £v/3).

A Converse Theorem

Let f € C2(R*,R") and f(x)/|x| bounded and suppose that
x = 0 is a stable equilibrium of the system % = f(x). Then, the
following two conditions are equivalent.

» For almost all initial states x(0) the solution x(¢) tends to
zero as t — oo.

» There exists a non-negative p € C'(R" \ {0}, R) which is
integrable outside a neighborhood of zero and such that

V- (fp)l(x) >0

for almost all x




From Lyapunov function to density function

Let V(x) > 0 for x # 0 and
VV.f<a {(V-f)V

for some o > 0. Then p(x) = V(x)~* satisfies
[V-(pl(x) >0.

In particular, if P is a positive definite matrix satisfying
ATP + PA < (@ Ltrace A)P

then p(x) = (T Px)~% can be used.

Example — PLL with two integrators

6 e 0, 0,
in C sin() s+ 1| Bout 1 out

| d% sin cos de
—— = —Ssine— e—
| dt? dt

: | Tools for almost global
—— stability needed!

Example — PLL with two integrators

m =fley) = {— Sine{ycose}

1_ ! >0
v  y2+2—2cose+ ysine —

pley) =

(V- fp)=p*(L—cose)?>0

A warning example (by David Angeli)

Consider a pendulum with damping

m = f(x,5) = {_ Sinyx _ y}

A density function proving almost global attractivity must satisfy
0V -(fp)=p(V-f)+p 0<p

For the pendulum V - f = —1 < 0 everywhere.
Hence p > 0 everywhere, with equality at unstable equilibria.

In particular, p = 0 on the stable manifold of the unstable
(upright) equilibrium! This makes it virtually impossible to find p
by numerical optimization.
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Convex Control Synthesis

The search for (V,u) such that
ov
- 0
ac L Haul <

is difficult

The search for (p,u) such that
V- (f +gu)p] >0

is convex in the pair (p,up)

If V- [(f + gur)pz] > 0 for & = 1,2, then
V- [(F + gu)(p1 + pa2)] > 0 foru = (prus + paus)/(p1 + p2)-

Example — Patching nonlinear controllers

1] - o) Bl

Xg u(x)
Each of the controllers u;(x) = —3x; — 6x2 and
ug(x) = x1 — 2x9 gives global stability. Corresponding density
functions are
p1(x) = (2} + &5 + 2122) ™" pa(x) = (af + 25 — x129) ™

with 1 and a5 are sufficiently large. For a1 > a9

_ pi(x)ui(x) + pa(x)us(x)
u) = p1(x) + p2(x)

acts as u;(x) for small x and as ug(x) for large x.

Example — Swing-up of inverted pendulum

Dynamics and energy

x ¥
L’/} = fulx,y) = {sinx+ucosx}

The feedback ug = —ycos xE steers towards the right energy.

E=9%/2+cosx—1
E =uycosx

1 cos?x [ y?
Po(x,y) = B2 V- (fupPo) = BT (yE +1 —COSX> >0




Example — Swing-up

The controller ur(x,y) = —2sin(x) — 2y is locally stabilizing
with Lyapunov function
V(x,y) = 8sin(x/2)? + (2sin(x/2) + y)2. With

1 —
PE= g2y max(0,1 — x2 — y2) pr, = max(0,V (x,y)~! — 100
PL PE
u(x,y) = ur(x,y) + s,
(x,9) o8+ PL L(x,9) o8+ PL £(x,)

the pendulum swings up for almost all initial conditions.
Phase plots with smoothened max-operator:
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Linear Programming Duality

min cTx = max bTA
x A
b < Ax c>ATA
x>0 A>0

Optimal transportation in a graph

Vi
s l10
V3 VO
la I2o
Va
Minimize  I31p31 + I32p32 + L2121 + L1010 + L2020
subjectto  ps1,...,p020 >0
P31+ ps2=>1

—p31— P21+ p10=>1
—pP32 + P21+ P20 =1

Dual gives lower bounds

Vi
s l10
V3 V()
l32 lzo
Ve
Maximize Vi + Vy+ V3
subjectto Vs—Vi<l33  Vy=0
V3 — Vs <39
Vo — Vo <lg

What do we learn from the graph problem?

-

» Two dual view-points

» p gives an explicit control law
» V gives a bound on the achievable cost

Value iteration
Decentralized computations
Level set propagation

v

v

\4

Linear Quadratic Gaussian Control

Consider the dynamics
Xr+1 = Axp+ Bup +wp

Let w;, be white noise, independent of x,, with covariance W.
Find a feedback law

up = —Lux;,

T
that minimizes the stationary covariance E { [zk] M [xk] }

Duality in linear quadratic control

The optimal cost has two dual expressions:

mgxtrace(PW) = méntrace(QM)

where the maximization over P € R™*" is such that

e -[7 Yo = o

and the minimization over @ € R(»+m)x(n+m) ig sych that
AT I
A B]Q[BT}—[I 0}QM+W <0

T
Notice: @ has an interpretation of the form @ = E { [x] m }

u| (u




What do we learn from the linear case?

The duality is analogous to the graph problem:

> Q gives an explicit control law L = @21 Q77
» P gives a bound on the achievable cost

Duality in nonlinear control

For =Y, u;i(x) fi(x) let V*(xo) = inf, 3 fo° wi(x)li(x)dt.
Then

sup /X Y(x)V (x)dx = /X Vf(x)V*(x)dx=igfzi: /X 1i(x)pi(x)dx

where sup is taken over non-negative V with

VV.fi+1;>0
V() =0

and inf is over p; with p; > 0 and

SV (h@)p) 2 ()

I

(Density functions p; correspond to control laws u; = p;/ 3", p;)
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Verify Positivty of a Polynomial

Does the polunomial
2y 42 —2xy—4y+5

take negative values?
No, because

x%y +y: —2xy —4y+5=(xy— 1)+ (y—2)°

How do we check if a polynomial can be written as a sum of
squares?

Sum-of-squares Decomposition

To check if 2x* + 5y* — x2y? 4 223y can be written as a sum of
squares, note that

x? q11 912 413 x?

y2 Q12 922 Q23 y2

Xy| 913 923 Qq33] |XV.
N————

Q
= quix* + gaoy* + (g3 + 2q12)x%y% + 2q132%y + 2ga3xy°

Use convex optimization to find @ > 0 subject ot the constraints
that g11 = 2, g22 = 5, 33 + 2912 = —1, 2q13 = 2, 2g93 = 0.
Factorizing @ = LT L with

L_ L1231
“V2lo 1 3

gives 2x* + 5y* — x2y? + 2x3y = 1(2x2 — 8y% + xy)? + L(y® + Bxy).

From LMis to SOS

Linear Matrix Inequalities (LMIs): Optimization with constraints
that certain quadratic forms must be non-negative:

Minimize  ciui + - + chuy

subjectto Ag+uiAi1+---+uA, >0

Sum-of-squares (SOS): Optimization with constraints that
certain polynomials must be sums of squares:

Minimize  ciui + -+ chuy

subjectto  Ag + u1Ai(x) + - + unAn(x) is @ sum of squares.

Lyapunov

For & = f(z), a Lyapunov function must satisfy
V(z) >0, (%)T f(z) < 0. Inequalities are linear in V.

A jet engine model (derived from Moore-Greitzer),
with controller:

3 1
i = 7y+§m27§z3
y = 3z—vy;

A generic 4th order polynomial Lyapunov function.

Viz,y)= > cpalyt

0<j+k<4

Find a V(z,y) by solving the SOS program:
V(z,y) is SOS, —VV(z,y) - f(z,y) is SOS.

o assachusots
|I|" s ACC 2006 - Sum of squares optimization — p. 15/39

Lyapunov example (cont.)

After solving, we obtain a Lyapunov function.

[mp—
|I|" gl ACC 2006 - Sum of squares optimization — p. 16/39




Global optimization

Consider min,, , F(z,y), with
F(z,y) =427 — 2ot 4 1a6 4 oy — 492 + 4.

Not convex. Many local minima. NP-hard. How to find good lower bounds?

@ Find the largest 7 s.t. |

Il I =
,!’%W

F(z,y) —~ is SOS. %
0 i

@ If exact, can recover optimal solution.

@ Surprisingly effective.

Solving, the maximum = is -1.0316. Exact bound.
Details in (P. & Sturmfels, 2001).

Direct extensions to constrained case.

ACC 2006 - Sum of squares optimization — p. 17/39

Example: Numerical control synthesis

V- [p(f + )] = e 6V - (fa+ g¢) ~ aVb - (af +g¢)]

Select b(x) as a quadratic Lyapunov function for a locally
stabilizing controller.

Numerically computed control law

t=y—x’+x2+u
y=x+4u

Based on local analysis near (x,y) = (0,0), we choose
b(x,y) = 3x2% + 2xy + 22

Let a(x,y) be a constant and put & = 4 to satisfy the
integrability condition on fp.

Solving the inequality for ¢(x, y) using SOSTOOLS gives

u(x,y) = 2((21 )) = —0.38x — 0.16y — 0.043y°

The stabilized system

i=y—x+x4u

y=x+4u
u = —0.38x — 0.16y — 0.043y°
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Example: Attitude observer for a rigid body

The estimated attitude relative to the true attitude of a rigid
body can be described by a matrix R(¢) which is orthogonal:
R(t)TR(t) = I. The estimate is correct when R(t) = I.

Consider an observer with error dynamics
R(@t) = kR@)[R®)T — R(t)] + R})E(¢)

where E(t) represents measurement noise. The condition
E(t) = —E(t)T guarantees that R(t) stays orthogonal.

A Lyapunov Argument for Exact Measurements

For E = 0, the Lyapunov function V(R) = }||R — I||? satisfies
V € [0,4] and

d k
SVR®) = —ZIREO - RO

An orthogonal 3 x 3 matrix R(t) # I can be symmetric only if it
has two eigenvalues at —1, that is when V' (R) takes its
maximal value 4.

Hence the Lyapunov function is strictly decreasing once V < 4.
This proves almost global stability of the equilibrium R = I.

Density functions for observer dynamics

Analyzing R = f(R) with the density function p where

1

p(R) = W

f(R) = kR(RT —R)
gives

2k

V'(Pf)=m>0

so
lim R(¢) = I
t—o00

for almost all initial states R(0).

Notice: Strict inequality gives robustness to measurement noise




Theorem on Rigid Body Observer

If |E(¢)|| < e < v/6k then almost all solutions to
R(t) = kR(t)[R®)T — R(¢)] + R()E(t)

converge towards a ball around the identity matrix I with radius

4—4\/1—¢2/(8k2)

[Vasconcelos/Rantzer/Silvestre/Oliveira, IEEE TAC, 56:11 (2011)]
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