
Lecture 6 – Nonlinear controllability

Nonlinear Controllability

Material

Lecture slides

Handout from Nonlinear Control Theory, Torkel Glad (Linköping)

Handout about Inverse function theorem by Hörmander

Nonlinear System

ẋ = f(x, u)

y = h(x, u)

Important special affine case:

ẋ = f(x) + g(x)u

y = h(x)

f : drift term

g : input term(s)

What you will learn today (spoiler alert)

New mathematical concepts and language

Manifolds, charts (M, „(x))

Vector fields
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ˆx
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What you will learn today

Local Controllability:

A nonlinear system is controllable if the linearized system is

controllable.

ẋ = f(x) + g(x)u is “accessible” iff

dim (f, g, [f, g], [f, [f, g]], . . .) = n

Fundamental Parking Theorem

What we will not do

Local Observability. Depends on x0 and u.

y
j

= h
j

(x)

O = spanL
X1 . . . L

Xkh
j

(x)

dO = span (dH | H œ O)

The system is locally observable if

dim (dO) = n

Duality between observability and controllability

And not this

Nonlinear Kalman Decomposition

Can find coordinates (x1, x2, x3, x4) so that

ẋ1 = f1
(x1, x3) + g(x1, x3)u

ẋ2 = f2
(x1, x2, x3, x4) + g(x1, x2, x3, x4)u

ẋ3 = f3
(x3)

ẋ4 = f4
(x1, x3)

y = h(x1, x3)

Relative Degree Smallest r such that L
g

Lr≠1
f

h(x0) ”= 0

Exact Linearization by Feedback

ẋ = f(x) + g(x)u

u = –(x) + —(x)v and z = Z(x) =∆ ż = Az + Bv

System is feedback linearizable if one can find y = h(x) so the

system has relative degree n. Can be checked with Lie-brackets

and not this

Differential Flatness

Zero Dynamics

Nonlinear Minimum Phase

Disturbance Decoupling

Normal Forms

Stabilization

Basic Result: Linearization at (x
0

, u

0

)

ẋ = f(x) + g(x)u, x(0) = x0

Theorem Suppose f(x0) + g(x0)u0 = 0. If the linearization

ż = Az + Bv

A =

ˆf

ˆx
(x0) +

ˆg

ˆx
(x0)u0

B = g(x0)

is controllable, then for all T > 0, ‘ > 0 the set

X
T,‘

= {x(T ); |u ≠ u0| < ‘}

contains a neighborhood of x0. (Proof: Nice exercise in using the
inverse function theorem)



Manifolds

What are natural mathematical models for state spaces?

Piece together “bent” pieces of Rn.

Same local properties as Rn. Different globally

Example - Pendulum

¨◊ = sin(◊) + u

Natural state space: R ◊ S1 = cylinder

S1
= unit circle

Rigid Bodies

Natural State Space

R =

Y
[r1 r2 r3

Z
\ œ SO(3)

ie RRT

= I and det(R) = 1

˙R = ≠R ◊ w … ˙R = ≠RS(w)

S(w) =

Y
_______[

0 ≠w3 w2
w3 0 ≠w1

≠w2 w1 0

Z
_______\

Rolling Penny

ẋ = u1 cos(◊)

ẏ = u1 sin(◊)

Ï̇ = u1
˙◊ = u2

The linearization is not controllable (check)

Can the penny be moved sideways in small time (keeping the head
up)?

Rolling Penny

Yes it can. But it is not obvious.

The penny has non-holonomic constraints a(z)ż = 0

Y
___[

sin ◊ ≠ cos ◊ 0 0

cos ◊ sin ◊ ≠1 0

Z
___\

Y
___________[

ẋ
ẏ
Ï̇
˙◊

Z
___________\

= 0

Can not be written as holonomic constraints: h(z) = 0 =∆ h
z

ż = 0.

Definition of Manifold

A CŒ (=smooth) manifold is a topological space M together with an
atlas {U

–

, Ï
–

} of pairwise CŒ-compatible coordinate charts that
cover M .

Topological space M?

Atlas {U
–

, Ï
–

} ?

Pairwise CŒ-compatible coordinate charts ?

Topology

A topology on a set M is a collection T of subsets of M .

O is called “open” if O œ T .

The collection T must be such that

ÿ, M œ T

O1, O2 œ T =∆ O1 fl O2 œ T

{O
i

} œ T =∆ fiO
i

œ T

Compatible Coordinate Charts

Compatible: Â ¶ Ï≠1
(x) œ CŒ

f is called ”smooth” if f(Â≠1
(x)) œ CŒ, ’Â

Note: f ¶ Ï≠1
(x) = f ¶ Â≠1 ¶ Â ¶ Ï≠1 œ CŒ

Independent on coordinate charts.

Example: Cylinder

Â ¶ Ï≠1 smooth on U fl V = (x2 ”= 0, z2 ”= 0)

z = Â(Ï≠1
(x)) is given by (z1, z2) = (x1, 4/x2)

The cylinder is a smooth manifold



Examples Global Differences to R

n - Example

Any smooth velocity field v on S2 must have a point where v(x) = 0

“You can’t comb the hair of a tennis ball”

Manifolds defined by equation systems

Many manifolds are defined implicitly by equations systems

f1(x1, . . . , x
n

) = 0

...

f
k

(x1, . . . , x
n

) = 0

When does this describe a (smooth) n ≠ k-dimensional manifold?

Differentials

f : A æ B is called differentiable at x œ A iff there is a continuous
linear map DF

x

(h) : A æ B such that

Îf(x + h) ≠ f(x) ≠ DF
x

(h)Î æ 0, h æ 0

DF
x

= differential (Jacobian)

DF =

Y
___________[

ˆf1
ˆx1

ˆf1
ˆx2

. . .

ˆf2
ˆx1

. . .
...

Z
___________\

Differentials

DF =

Y
___________[

ˆf1
ˆx1

ˆf1
ˆx2

. . .

ˆf2
ˆx1

. . .
...

Z
___________\

Definition Rank of f at x := rank(DF
x

).

If f smooth then

Rank (DF
x0) = k =∆ Rank (DF

x

) Ø k

for all x close to x0.

Proof: D
k

(x) = k ◊ k submatrix of DF
x

with
det(D

k

(x0)) ”= 0 =∆ det(D
k

(x)) ”= 0, for x close to x0.

Inverse Function Theorem

Theorem Let X be open in U and f œ C1
(X, V ), f(x0) = y0. For

existence of g œ C1
(Y, U) where Y is a neighborhood of y0 so

a) f ¶ g = identity near y0

b) g ¶ f = identity near x0

c) a) and b)

it is necessary and sufficient that there is a linear map A such that
respectively

a’) f Õ
(x0)A = I

V

b’) Af Õ
(x0) = I

U

c’) a’) and b’)

Condition c’ implies that g is uniquely determined near y0.

Proof idea: To solve y = f(x) use

x
k

= x
k≠1 + f Õ

(x0)

≠1
(y ≠ f(x

k≠1))

Prove
q

(x
k

≠ x
k≠1) converges for y near y0.

See handout.

Implicit Function Theorem

h(x, y) = 0

ˆh

ˆx
full rank =∆ x = x(y) uniquely

Example

h(x, y) = x2
+ y2 ≠ 1, hÕ

x

= 2x

So x = x(y) uniquely except near (0, ±1).

In fact x =


1 ≠ y2, x0 > 0 and x = ≠

1 ≠ y2, x0 < 0.



Discussion

Implicit F. T. =∆ Inverse F. T. c).

h(x, y) = y ≠ f(x); hÕ
x

= f Õ
x

=∆ x = x(y) uniquely

Inverse F. T. c) =∆ Implicit F. T.

f(x, y) = (h(x, y), y)

f Õ
=

Y
___[

hÕ
x

hÕ
y

0 I

Z
___\ full rank

So (x, y) locally determined by (h, y) = (0, y)

=∆ x = x(y) uniquely locally

Note
f(x, y) = 0

f Õ
x

ˆx

ˆy
+ f Õ

y

= 0

ˆx

ˆy
= ≠(f Õ

x

)

≠1f Õ
y

Try it yourself example

x3
1 ≠ ex2

+ x3
3 ≠ 1 = 0

x2
1 + x2 ≠ x2

3 = 0

Are x1, x2 smooth functions of x3 around (1, 0, 1)?
What is ˆx1

ˆx3
at that point?

Functions Between Manifolds

Definition

f œ CŒ ≈∆ Â ¶ f ¶ Ï≠1 œ CŒ, ’Â, Ï

Manifolds by equation systems

f1(x1, . . . , x
n

) = 0

...

f
k

(x1, . . . , x
n

) = 0

determines an n ≠ k dimensional manifold near x̄ if
Y
___________[

ˆf1
ˆx1

ˆf1
ˆx2

. . .

ˆf2
ˆx1

. . .
...

Z
___________\

has full rank (= k) at x̄

(”Gradients Òf1, . . . , Òf
k

are linearly independent”)

Tangent Vectors - different definitions

Define it only for manifolds embedded in Rn:

ẋ = lim

tæ0
Ï(t) ≠ Ï(0)

t

Velocity vectors in Rn.
Coordinate free version. Tangent vectors at x ¡ ”equivalance
classes of curves with Ï(0) = x”, we define Ï(t) ≥ Â(t) when

Ï(0) = Â(0) = x and lim

tæ0
Ï(t) ≠ Â(t)

t
= 0 in some chart

Our Definition

Derivative operator X(f) : (f : M ‘æ R) ‘æ R

X(–f + —g) = –X(f) + —X(g)

X(fg) = fX(g) + gX(f)

Example: Take any coordinate chart (U, Ï) with coordinates x. Then

X
a

=

nÿ

i=1
–

i

ˆ

ˆx
i

is a tangent vector, where

X
a

(f) =

nÿ

i=1
–

i

ˆf

ˆx
i

(a)

Different notation

L
X

(f) = X(f) Lie-derivative = fishermans derivative

Examples
ˆ

ˆ◊
;

ˆ

ˆz
; z

ˆ

ˆ◊
+ sin(◊)

ˆ

ˆz

Coordinate Change

X =

Y
[ ˆ

ˆx1
. . . ˆ

ˆxn

Z
\

Y
________[

–1
...

–
n

Z
________\

Change coordinates — =

ˆz

ˆx

– or
Y
[ ˆ

ˆx1
. . . ˆ

ˆxn

Z
\

=

Y
[ ˆ

ˆz1
. . . ˆ

ˆzn

Z
\ ˆz

ˆx

Example

z1 = x1

z2 = x1 + x2
ˆ

ˆx1
=

ˆz1
ˆx1

ˆ

ˆz1
+

ˆz2
ˆx1

ˆ

ˆz2
=

ˆ

ˆz1
+

ˆ

ˆz2

Note that x1 = z1 does not imply ˆ

ˆx1
=

ˆ

ˆz1

Push Forward Operator

[fúX](g) := X(g ¶ f)



(Smooth) Vector Fields

Assigns a tangent vector to each point: p ‘æ X
p

X =

nÿ

i=1
X

i

(p)

ˆ

ˆx
i

X
i

(p) smooth functions of p.

Alternativ notation: X ≥
Y
________[

X1(x1, . . . , x
n

)

...
X

n

(x1, . . . , x
n

)

Z
________\

Integral Curve

‡(t) is an integral curve to X if in local coordinates

‡(t) =

Y
________[

‡1(t)
...

‡
n

(t)

Z
________\

ˆ

ˆt
(g(‡(t)) = X(‡(t))(g)

ÿ ˆg

ˆx
i

d‡
i

dt
=

ÿ
X

i

(‡(t))
ˆg

ˆx
i

i.e.

‡̇1 = X1(‡(t))
...

‡̇
n

= X
n

(‡(t))

A set of ODEs

Transformation Group, Flow

Xt

(p) = solution to ẋ = X(x), x(0) = p

Xt is smooth. X0
= id

L
X

(g) = X(g) =

nÿ

i=1
X

i

ˆg

ˆx
i

= lim

hæ0
g(Xh

(p)) ≠ g(p)

h

L
–X+—Y

= –L
X

+ —L
Y

, –, — œ R

ẋ = f(x, u) f : M ◊ U ‘æ TM

Example

ẋ = f(x) + g(x)u

y = h(x)

ẏ =

ˆh

ˆx
ẋ =

ˆh

ˆx
(f + gu) = L

f+gu

h

= L
f

h + uL
g

h

y(k)
= (L

f+gu

)

kh

Main new object: Lie Bracket of vector fields

Consider two vector fields ẋ = f(x) and ẋ = g(x)

Lie-bracket. New vector field

[f, g] =

ˆg

ˆx
f ≠ ˆf

ˆx
g

Why is it interesting?

ẋ = f(x) + g1(x)u1 + g2(x)u2 + . . .

Roughly we have:
If the Liebracket ”tree” has full rank, then the system is ”controllable”.

Example

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 ± x2u1

This means g1 =

Y
_______[

1

0

±x2

Z
_______\

and g2 =

Y
_______[

0

1

x1

Z
_______\

[g1, g2] =

Y
_______[

0 0 0

0 0 0

1 0 0

Z
_______\

Y
_______[

1

0

±x2

Z
_______\

≠
Y
_______[

0 0 0

0 0 0

0 ±1 0

Z
_______\

Y
_______[

0

1

x1

Z
_______\

Example

Hence at x = 0 we have

g1 =

Y
_______[

1

0

0

Z
_______\

, g2 =

Y
_______[

0

1

0

Z
_______\

, [g1, g2] =

Y
_______[

0

0

1 ≠ ±1

Z
_______\

With the minus-sign the three vector fields span R3, and we have
controllability.

With the plus-sign the system is not controllable, in fact it can be seen
that x2

1 + x2
2 ≠ 2x3 is an invariant.

Example

ẋ = f(x) + g(x)u

y = h(x)

ẏ =

ˆh

ˆx
ẋ =

ˆh

ˆx
(f + gu) = L

f+gu

h

= L
f

h + uL
g

h

y(k)
= (L

f+gu

)

kh



Lie-Brackets

[X, Y ]

p

(f) = X
p

(Y (f)) ≠ Y
p

(X(f))

X ≥
Y
________[

X1
...

X
n

Z
________\

; Y ≥
Y
________[

Y1
...

Y
n

Z
________\

[X, Y ] =

ˆY

ˆx
X ≠ ˆX

ˆx
Y

Another example

X =

Y
___[

cos „
r

Z
___\ ≥ cos „

ˆ

ˆr
+ r

ˆ

ˆ„

Y =

Y
___[

r
1

Z
___\ ≥ r

ˆ

ˆr
+

ˆ

ˆ„

[X, Y ] =

Y
___[

1 0

0 0

Z
___\

Y
___[

cos „
r

Z
___\ ≠

Y
___[

0 ≠ sin „
1 0

Z
___\

Y
___[

r
1

Z
___\

=

Y
___[

cos „ ≠ sin „
≠r

Z
___\ ≥ (cos „ ≠ sin „)

ˆ

ˆr
≠ r

ˆ

ˆ„

Lie-Brackets

Why are Lie-brackets so fundamental?

ẋ = g1u1 + g2u2

(u1(t), u2(t)) =

Y
___]

___[

(1, 0) t œ [0, h)

(0, 1) t œ [h, 2h)

(≠1, 0) t œ [2h, 3h)

(0, ≠1) t œ [3h, 4h)

x(4h) = x0 + h2
[g1, g2] + O(h3

)

Trotters Product Formula

�

t

[X,Y ] = lim

næŒ

A

�


t
n

≠Y

�


t
n

≠X

�


t
n

Y

�


t
n

X

B
n

Proof sketch 3
1 +

tf

n
+ o

1 tf

n

24
n

æ etf

Some Lie-Bracket Formulas

[fX, gY ] = fg[X, Y ] + fX(g)Y ≠ gY (f)X

[X, Y ] = ≠[Y, X]

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0

L
X

Y = [X, Y ] = lim

hæ0
1

h
[X≠h

ú Y ≠ Y ]

X≠h

ú Y =

Œÿ

n=0
adn

X

Y
hn

n!

= Y + h[X, Y ] +

h2

2

[X, [X, Y ]] . . .

related to

eAeB

= eC

; C = A + B +

1

2

[A, B] + . . .

Vector Fields, Summary

A vector field X is associated with

a) A system of differential equations

dx

dt
= X(x)

b) A flow �

t

: M ‘æ M, t œ [t0, t1], where ‡(t) = �

t

(x) is the
solution to

d‡

dt
= X(‡), ‡(0) = x

c) A directional derivative

X
x

f =

d

dt
f(�

t

(x))

---
t=0

d) A ”derivation” of the algebra CŒ
(M).

e) A partial differential operator

X =

ÿ
X

j

ˆ

ˆx
j

a æ b solution to differential equations

b æ c direct

c æ d direct

d æ e proposition

e æ a direct

Park Your Car Using Lie-Brackets!

(x, y) : position

„ : direction of car

◊ : direction of wheels

(x, y, „, ◊) œ R2 ◊ S1 ◊ [◊min, ◊max]

Parking cont’d

Steer =

Y
___________[

0

0

0

1

Z
___________\

, Drive =

Y
___________[

cos(„ + ◊)

sin(„ + ◊)

sin(◊)

0

Z
___________\

[Steer, Drive] = . . . =

Y
___________[

≠ sin(„ + ◊)

cos(„ + ◊)

cos(◊)

0

Z
___________\

:= Wriggle



An easy calculation (exercise) shows that

[Wriggle, Drive] =

Y
___________[

≠ sin(„ + ◊)

cos(„ + ◊)

0

0

Z
___________\

=: Slide

For ◊ = 0 this takes you sideways:

Slidet

(x, y, „, 0) = (x ≠ t sin(„), x + t cos(„), „, 0)

Fundamental Parking Theorem
You can get out of any parking lot that is larger than the car. Use the
following control: Wriggle, Drive, –Wriggle (this requires a cool head),
–Drive (repeat).

Proof: Trotters Product Formula

Linear Systems

ẋ = Ax + Bu = f(x) + g(x)u

[f, g] = [Ax, B] = 0 ≠ AB

[g, [f, g]] = 0

[f, [f, g]] = [Ax, ≠AB] = A2B
...

Adk

f

g = [f, [f, . . . , [f, g]]]

¸ ˚˙ ˝
k Lie-brackets

= (≠1)

kAkB

Controllability Theorems

ẋ = f(x) +

q
i

g
i

(x)u
i

Let A(x0) be the reachable set from x0, i.e. all points that can be
reached from x0 using a suitable control u

Accessibility The system has the accessibility property at x if A(x)

has nonempty interior

Accessibility theorem

C = smallest Lie subalg. containing {f, g1, . . . , g
m

}

Theorem If for all x0 the Lie-bracket tree contains n linearly
independent elements, then the system is has the accessbility property

dim C = n =∆ can reach open set

If f = 0, (or more generally f(x, u) is ”symmetric”, see Glad) then the
system is controllable: A(x0) = Rn

Reading Assignment

For a precis formulation, and more about ”controllability” vs
”accessability” see

T. Glad, Nonlinear Control Theory, Chapter 8, pp 73-81


