Synthesis, Nonlinear design

> Introduction
> Relative degree & zero-dynamics (rev.)
» Exact Linearization (intro)
> Control Lyapunov functions
> Lyapunov redesign
» Nonlinear damping
» Backstepping
» Control Lyapunov functions (CLFs)

> passivity
> robust/adaptive

Ch 18.1-13.2, 14.1-14.3 Nonlinear Systems, Khalil
The Joy of Feedback, P V Kokotovic

Why nonlinear design methods?

> Linear design degraded by nonlinearities (e.g. saturations)
» Linearization not controllable (e.g. pocket parking)
> Long state transitions (e.g. satellite orbits)

> Inherently nonlinear...

Relative degree

“ A system’s relative degree: How many times you need to take the
derivative of the output signal before the input shows up”

Note: A nonlinear system may have state-dependent relative degree.

Example: The ball and beam process (see process homepage for more
information).

If nothing else stated we assume a fixed relative degree in the sequel.

For a nonlinear system with relative degree d

i= f(x) + glx)u

¥ = h(x)
we have
o _ 4 _Oh(x) . _0h oh
Vo= Sh) = 5= D) + g (xu
= Lsh(x)+ Lyh(x)u
——r
=0if d>1
y(k) = Lf;h(x) ifk <d (2

¥ = LIn(x) + LyLY Vh(x)u

Using the same kind of coordinate transformations as for the feedback
linearizable systems above, we can introduce new state space variables,
£, where the first d coordinates are chosen as

Under some conditions on involutivity, the Frobenius theorem guarantees
the existence of another (n — d) functions to provide a local state
transformation of full rank. Such a coordinate change transforms the
system to the normal form

&1=6
& = h(x) :
& =Lrh(x) O
- €) £a-1=&a (4)
: : d d—1
) - L(d_l)h(x) Ea=L%h(€,2) + LyL3  h(&, 2)u
! z= ¢(€’ Z)
y==&
where 2 = (&, z) represent the zero dynamics of order n — d
[Byrnes-+Isidori 1991].
Example (Zero dynamics for linear systems)
Consider the linear system
_ s—1 5
y_32+2s+1u ®) y=0=2>x1=0= %1=0 =>x+u=0
with the following state-space description @
= X = —U = X3
X1 =-—2x1+x2 +u
PA—— —u ©) The remaining dynamics is an unstable system corresponding to the zero
y = x s = 1in the transfer function (5).

We have the relative degree =1
Find the zero-dynamics, by assigning y = 0.




Exact (feedback) Linearization

Idea: Transform the nonlinear system into a linear system by means of
feedback and/or a change of variables. After this, a stabilizing state
feedback is designed.

Inner feedback linearization and outer linear feedback control

For general nonlinear systems, feedback linearization comprises

> state transformation
> inversion of nonlinearities

> linear feedback

Simple example

i= %sin(x) + cos(x)u
Put 1
g .
u= —=sin(x) +v
cos(x)( l (@) +v)
gives (locally)
i=v
Design linear controller v = —Il1x + —lo%, etc

State transformation

“More difficult” example, where we need a state transformation

%1 = asin(xg)

Xg = —x% +u
Can not cancel a sin(xz). Introduce

21 =X

2Z9 = asin x2
so that

21 =22

29 = (—2% + u)acos xz
Then feedback linearization is (locally) possible by

u =22 +v/(acos(z2))

Feedback linearization (“nonlinear version of pole-zero cancellation”)

Feedback linearization can be interpreted as a nonlinear version of
pole-zero cancellations which can not be used if the zero-dynamics are
unstable, i. e., for nonminimum-phase system.

Linear systems: See paper [Middleton (1999) Automatica 35(5), "Slow stable open-loop poles: to

cancel or not to cancel"]

When to cancel nonlinearities?

. 3
X1 =—x71tur

5c2=xg+uz

Nonrobust and/or not necessary.
However, note the difference between tracking or regulation!!

Will see later how “optimal criteria” will give hints.

“Matching” uncertainties

X1 = X2
Xp—1 = X4
dn = LYh(x, 2) + LY h(x, 2)u
z2=19(x, z)
y=x

Integrator chain and nonlinearities (+ zero-dynamics)
Note that uncertainties due to parameters etc. are
“collected in”

L‘;h(x, z) + LgL‘}’lh(x, z)u

Achieving passivity by feedback ( Feedback passivation )
Need to have

> relative degree one

» weakly minimum phase

NOTE! (Nonlinear) relative degree and zero-dynamics invariant under
feedback!
Two major challenges:

> avoid non-robust cancellations

> make it constructive by finding matching input-output pairs

Exact Linearization

» Often useful in simple cases
> Important intuition may be lost
> Nonlinear version of "pole-zero cancellations”

Related to “Lie brackets” and “flathess”

v

v

Known under several different names, e.g.,
» Computed torque (robotics)




From analysis to synthesis

Lyapunov criterion Search for (V, u) such that

ov
a[f*‘gu] <0

IQC criterion Search for @(s) and 71, . . ., Tm such that

(72 + Q) ) ] [; eIl (iw) [ (72 + Q) ) ] <o

for w € [0, 0]

In both cases, the problem is non-convex and hard.
Heuristic idea: Iterate between the arguments

Convexity for state feedback

Problem Suppose a < ¢(v) /v < B. Given the system
% = fu(x) == Ax+ E¢(Fx) + Bu

findu = —Lx and V(x) = xT Px such that
Fefulx) <0

Solution Solve for P, L

(A+ «EF —BL)"P + P(A+ aEF —BL) <0
(A+BEF —BL)"P+ P(A+BEF —BL)<0

or equivalently convex in (@, K) = (P~%, LP™1)

(AQ + aEFQ — BK)T + (AQ + aEFQ — BK) <0
(AQ + BEFQ — BK)T + (AQ + BEFQ — BK) < 0

Control Lyapunov Function (CLF)

A positive definite radially unbounded C1 function V is called a CLF for the
system & = f(x, u) if for each x # 0, there exists w such that

%(x)f(x, u) <0 (Notation: LV (x) < 0)

When f(x, u) = f(x) + g(x)u, V is a CLF if and only if

LV (x) < Oforall x # 0 suchthat |L,V(x)| =0

Example

Check if V(x, y) = [x2 + (y + x2)%]2/2 is a CLF for the system

X =xy
y=-y+u

LyV(xy) = &%y + (v +2°) (=y +227)
LQV(x; y)=2(y + x2)[x2 +(y+ x2)2]

LiV(xy)=0 = y=—-x* = L/V(xy)=—-2"<0 if(xy)7

Sontag’s formula

If V' is a CLF for the system & = f(x) + g(x)u, then a continuous
asymptotically stabilizing feedback is defined by

) 0 if LgV(x) =0
ulx) == LyVAr/(LrV2+((LyV)(LyV)T)? )
_LiV+ ((Zgz/;(’z(g‘g)T)( sV’ [LgV]T IngV(JC) £0

Note: Can cancel factor L,V # 0 if scalar.

o [° it LgV(x) =0
u(x) = VEPHL, V)
LBV () i Ly V(x) # 0

Backstepping idea

Problem

Given a CLF for the system
i=f(xu)
find one for the extended system

x:f(x,y)
y=h(xy)+u

Idea

Use y to control the first system. Use u for the second.

Note potential for recursivity

Motivation: Feedback Linearization

One of the drawbacks with feedback linearization is that exact cancellation
of nonlinear terms may not be possible due to e.g., parameter
uncertainties.

A suggested solution:

> stabilization via feedback linearization around a nominal model

» consider known bounds on the uncertainties to provide an additional
term for stabilization ( Lyapunov redesign )

Lyapunov Redesign

Consider the nominal system
= f(xt)+G(x t)u
with the known control law
w=9(x 1)

so that the system is uniformly asymptotically stable.

Assume that a Lyapunov function V' (x, ¢) is known s.t.

A

ai(ll*l) < V(x ) < all=l)

ov . %[f(t, x)+ Gy < —as(|lxl))

ot




Lyapunov Redesign — cont.

Perturbed system

= f(x,t) +G(x, t)[u+ 6] (10)
disturbance § = 8 (¢, x, u)

Assume the disturbance satisfies the bound

16z x ¥ +v)|| < p(x, £) + rol[v]|

If we know p and ky how do we design additional control v such that
u = Y(x, t) + v stabilizes (10)?

The matching condition: perturbation enters at same place as control
signal u.

Apply u = ¢(x, t) +v

2=f(xt)+Gx )Y+ G(x, ) v+t xv+v)] (11)

. ov. oV ov
_ e <
\% 5 + o [f @ x) + Gy] + o Glv+46] <

ov
—as(llll) + 2L Glo + 6]
Introduce w = [%—ZG]

V < —as(|]#]]) + wlo + w?s

Choose v such that wTv + wT$ < 0:
Two alternatives presented in Khalil (|| - ||2-norm / || - ||so-norm)

Note: v appears at same place as & due to the matching condition

Lyapunov Redesign — cont.

wlv +wTs <wlv + [|wT||2]|8])2

wTv +w?8 <wv + [|w[|1]|6]|s

Alternative 1:

If
162 x ¢ +v)ll2 < p(= £) + Kol[v]l2, 0 <Ko <1

take w
v=—n(t x)7||w||2

where 77 > p/(1 — ko)

Alternative 2:
If
[16(2, %, % +v)lloo < p(a, 1) + kol [v]loo; 0 <Ko <1
take
v=—n(t x)sgnw

where 7 > p/(1— o)
Restriction on kp < 1 but not on growth of p.
Alt 1 and alt 2 coincide for single-input systems.

Note: control laws are discontinues fcn of x (risk of chattering)

Example: Matched uncertainty

(+) J
g o()
A

x=u+@(x)A(t)

Example cont.

Example:

Exponentially decaying disturbance A(¢) = A(0)e™**
linear feedback u = —cx, ¢ >0

p(x) = o®

% = —cx + A(0)e Fiy?

Similar to peaking problem in the first lecture: Finite escape of
solution to infinity if A(0)x(0) > ¢ + &

We want to guarantee that x(t) stay bounded for all initial values x(0) and
all bounded disturbances A ()

Nonlinear damping

Modify the control law in the previous example as:
u=—cx—s(x)x

where
—s(x)x

will be denoted nonlinear damping.

2
X
Use the Lyapunov function candidate V = )

V = xu + x¢p(x)A

= —cx? — x%s(x) + xp(x)A

How to proceed?

Choose
s(x) = kg?(x)

to complete the squares!

V = —cx? — «%s(x) + xg(x)A

=—cx?—k|x —AQ+K~A—2 <_cx2+A72
- ok 42— 4K

Note! V is negative whenever

A
lx(8)] > 27\/%




Can show that x(¢) converges to the set

R= {x sa(@)] < 2\?5}

i.e., x(t) stays bounded for all bounded disturbances A

Remark: The nonlinear damping —kx¢?(x) renders the system
Input-To-State Stable (ISS) with respect to the disturbance.

Young’s inequality

Letp>1,¢>1st. (p—1)(¢g—1)=1,
then for all € > 0 and all (x, y) € |R2

xy < %Plxlp + q%qlﬂq
Standard case: (p = q = 2, €2/2 = k)
xy < Kls + |y
4K
Our example:

A%(2)
4K

xp(x)A(t) < kx?p?(x) +

Backstepping idea

Problem

Given a CLF for the system
%= f(xu)
find one for the extended system

%= f(x,y)
y=h(xy)+u

Idea

Use y to control the first system. Use u for the second.

Note: potential for recursivity

Backstepping

Let V, be a CLF for the system & = f(x) + g(x)7 with corresponding
asymptotically stabilizing control law § = ¢(x). Then
V(% y) = Vi(x) + [y — 6(x)]?/2 is a CLF for the system’

&= f(x) + g(x)y
y=h(x,y)+u

with corresponding control law

w= 2170+ 91~ 22 g() — h(x3) +6() —

Proof.
V = (0V2/0x)(f + gy) + (v — 8) [ +u — (84/0x) - (f + g¥)]

= (0Vy/0x)(f + g¢) + (v — 9)[(0V:/0x)g — (04/0x) - (f + gy) + A
= (OV./0x)(f + g8) — (y—9)> < 0

Backstepping Example

For the system

g=x2"+y
y=u

we can choose Vy(x) = x2 and ¢(x) = —x

u=¢'()f(%y) = h(xy)+4(x) -y
=—x+1)(2+y)—P—x—y

2 _xto get the control law

with Lyapunov function

V(x,y) = Va(2) + [y — $(2)]?/2
=%+ (y + 2% + x)?/2

Example again (step by step)

%1 =212 + %9 (12)
X9 = u(x)
Find u(x) which stabilizes (12).

Idea : Try first to stabilize the x1-system with x2 and then stabilize the
whole system with u.

We know that if xo = —x1 — x%
then x1 — 0 asymptotically ( exponentially )
ast — oo.

We can't expect to realize xg = a(x1) exactly, but we can always try to

get
t

he error — 0.

Introduce the error states

21 = X1
(13)
29 = 2 — az(x1)
where a1 (x1) = —x1 — x%
X2
—_——~
. . 2 _
=2z = x1—21+22+a1(21)—
= z%+zz—z%—z1:—zl+zz
known
zZ9 = xz—oq:u(x)— a1
d
. 2 . .
A1 = —\—27—21)=—2121—21
(- —z)

= —zi(-z1+22) — (~z1+22) =

= z%—z122—22—21

Start with a Lyapunov for the first subsystem (z1-dynamics):

1
i = 55{ >0
Vl = z121 = —Z% + 2122
Note :
If zg = 0 we would achieve V; = —z% <0
with ocl(xl)




Now look at the augmented Lyapunov fcn for the error system

1
Vo = Vi+ §Z§ >0
Vg = Vl + 2222 =
= —22 42120 +29(u— 22 + 2129)
= —z%+22(u—2%+2122+22+21)

choose = —zy

= —z%—z%SO

soifu :z%—zlzz—zz—zl
= (21, 22) — 0 asymptotically (exponentially)
= (x1, x2) — 0 asymptotically

Asz; =xjandzg = x93 — 1 :x2+x%+x1,
we can express u as a ( nonlinear ) state feedback function of x1 and xs.

Backward propagation of desired control signal

X2

)

If we could use x as control signal, we would like to assign it to ar(x1) to
stabilize the x1-dynamics.

X2

Ao
e ft+a

Move the control “backwards” through the integrator

29=2—«

L)@ f f X1

‘ ®
—da/dt fta

Note the change of coordinates!

Adaptive Backstepping

System :

%1 = x2 + 0y (x1)
X9 = X3 (14)
563 = u(t)

where 7 is a known function of x1 and

6 is an unknown parameter
Introduce new (error) coordinates

{ z1(t) = x1(t) ) 15)
22(1/‘) = xg(t) — 061(21, 9)

where o is used as a control to stabilize the z1- system w.r.t a certain
Lyapunov-function.

Lyapunov function : V3 = %212 + %672 where 6 = (9 — 0)isthe
parameter error

(Back-) Step 1:

x2

—~~
21(t) = za(t) + ai(z1, 0) +0y(21(2))

Vi = 2121+ 00=z1(z2+ a1+ 0y) + 00 =
= zi[za+ o1+ 0y 1 +6(0— z17)
—— —~—
—z1 T

Choose a1 = —z1 — 9;/

= V1 = —Z% + 2129 + 9(9 — 1'1)

Note: If we used 9 = 77 as update law
and if zg = O then V] = —z? <0

Step 2: Introduce z3 = x3 — a2(21, 22, 9) and
use arg as control to stabilize the (21, z2)-system

etc.

Observer backstepping

Observer backstepping is based on the following steps:

1. A (nonlinear) observer is designed which provides (exponentially)
convergent estimates.

2. Backstepping is applied to a system where the states have been
replaces by their estimates.
The observation errors are regarded as (bounded) disturbances and
handled by nonlinear damping.

Backstepping applies to systems in strict-feedback form

#1 = f1(x1) + x2
%2 = fa(x1, x2) + x3

Xy = fn(xL X2 ... Xn—1, xn) +u

Compare with
Strict-feedforward systems

%1 = x2 + f1(x2, X3, ..., Xy, U)

%2 = 23 + fa(x3, .. ., Xn, U)

Xn—1= Xp + fn—l(xn, u)

Ap=1u




Nonlinear Control Synthesis cont’d

» Optimal and inverse(!) optimal design

» Saturated control and feedforwarding

Synthesis cont'd

» HJB

> Inverse optimal control

> Stabilization with Saturations
> Integrator forwarding

> Relations between the concepts

Optimality
Two main alternatives

> Pontryagin’s Maximum Principle (Necessary cond)

» Hamilton-Jacobi-Bellman (Dyn prog.) (Sufficient cond)

Based on Ch 18.5 [Glad & Ljung]

Find the state feedback law
u = k(x)

which solves minimization problem

tr
minuf (L wdt + o(ty, x(t7))
to
& = f(x(2), u(?))
ueU, to<t<t;
x(to) = xo, Y(tr, x(¢)) =0
Assume that u™* and x* solves this optimization problem.

Define V (%o, xo) as the optimal return function

tr
V(to, x0) = f (L(x", u*)dt + g(ty, 5" (t7)

to
if we startin (¢, (o) = xo)

Remark: Need to satisfy ...

Property of V:
If V is differentiable along a solution x(¢), then

%V(t, x(t)) + L(x(¢), u(t)) >0 (16)

with equality for x* and u*.

Assume that we for

> ¢ € [to, to + h] use any control u(t)
> t € [to + h, t] use optimal control u(¢)*

: : i time i time
toto+h tr toto+h tr

The Optimization criterion becomes

f O L), w))dr + V(o + b x(to + )

to

If optimal control from to: V (¢0, x(¢0)) =

to+h
V(to, x(to)) < f (L(x(r), u(r))dr+ V(to + B, x(to + 1))

to

which gives

V(to + h, x(to + h)) — V(to, x(to)) 1 [ho+h
A +ﬁ fto (L(x(r), u(r))dr>0

which in the limit A — 07 gives

%V(t, (&) + L(x(2), u(®)) >0

Theorem: If the optimal return value V is differentiable it satisfies

ov

ov
— 5 = minyey (af(x, u) + L(x, y)) (17)

Proof: The chain rule gives

Ly x(t) = Vi + Vif

dt
and from Eq.(16) gives
ov. oV
<
5 < Bx f(x,u) + L(x, y)

with equality for optimal control u*.

Eq.(17) is called
the Hamilton-Jacobi equation (HJ) for a finite ¢
the Hamilton-Jacobi-Bellman equation (HJB) for ¢y = oo.




Remarks: Severe restriction to assume V differentiable (e.g., bang-bang
solutions for minimal time problems give "corners” in V but results can be
extended to this case as well.

> State feedback law

u = k(t, x) = argmin, ¢y (%f(x, u) + L(x, y))

» Necessary conditions while Pontryagin gives sufficient.

Consider the system
%= f(x) + g(x)u

Find u = u* such that
(i) u achieves asymptotic stability of the origin x = 0
(i) u minimizes the cost functional

ﬁwm@+ﬂkwwwt (18)

where [(x) > 0 and R(x) > 0Vx.

For a given optimal feedback w(x)* the value of V' depends on the initial
state x(0): V(x(0)) or simply V' (x) (and start time according to previous
slides).

Theorem (Optimality and Stability)
Suppose there exist a C!-function V(x) > 0 which satisfies the
Hamilton-Jacobi-Bellman equation

1) + LV (@)~ {L V@R L V()T =0
V(0) =0

(19)

such that the feedback control
1
u'(x) = —5 BN (LeV (@)

achieves asymptotic stability of the origin x = 0.

Thenu* (x) is the optimal stabilizing control which minimizes the cost (18).

Example:
Linear system
x = Ax + Bu

Cost Function

00
V= f («TcTCx+uTRu)dt, R>0
0

Riccati-equation

PA+ APT — PBR'BTP+CTC=0 (20)

If (A,B) controllable and (A,C) observable, then (20) has a unique solution
P = PT > 0 such that the optimal costis V = x” Px and

u*(x) = —R'BTPx

is the optimal stabilizing control

5-min exercise:
Consider the system
i=x+u

and the cost functional

V:f(ﬁ+ﬂmt
0

What is the optimal stabilizing control?

HJB:

X+ S -
Ox

2, 0V 5 1[0V
dx 4

f:q V(x) =0

ov = 2x% + V4xt + 422
Ox @1

=222 +2xV/x2 + 1

V(x) = 234 g(x2 +1)324+¢, C=-2/3s0that V(0) =0 (22

3

10V
u*(x) = _1ov_ —x? —x\/a2+1

2 0x

Remark: We have chosen the positive solution in (21) as V(x) >0

Remark: If (A,B) stabilizable and (A,C) detectable then P is positive
semi-definite.
Example (non-detectability in cost)

System
x=x4+u
Cost functional
(o)
V= f uldt
0
Riccati-eq
2P-P2=0, P=0orP=2

Corresponding HJB

oV 1,0V 4

— ——(=)"=0, V(©0)=0

x ox 4( Ox ) ©)

V=0orV =22




Inverse optimality

A stabilizing control law u(x) solves an inverse optimal problem for the
system
&= f(x) + g(x)u

if it can be written as
u(x) = —k(x)/2 = —%Ril(x)(LgV(x))T, R(x)>0
where V(x) > 0 and
V=L;V+L,V=L;V— %Lng(x) <0
T

Then V' (x) is the solution of the HJB-eqn

I(x) + LyV — %(LQV)R’I(LQV)T =0

The underlying idea of formulating an inverse optimal problem is to get
some help to avoid non-robust cancellations and gain some stability
margins.

Example: Non-robust cancellation
Consider the system

i=x+u
and the control law
up = —x% —x = X =—x
However, if there is some small perturbation gain u = (1 + €)uy,, we get
% =—(1+€)x — ex?
This system may has finite escape time solutions.

How does u* from previous example behave?

Damping Control / Jurdjevic-Quinn

Consider the system
&= f(x) + g(x)u
Assume that the drift part of the system is stable, i.e.,

£=f(x), f(0)=0

and that we know a function V' (x) such that LV < 0 for all x.
How to make it asymptotically stable (robustly)?

To add more damping to the system to render it asymptotically stable the
following suggestion was made by Jurdjevic-Quinn (1978)

V=L/V+LsVu<LyVu

Choose
u=—k-(L,V)T

It also solves the global optimization problem for the cost functional
o 2
wm:f (=) + ZuTu)dt
0 K
for the state cost function

Ux) = =LyV + S (LgV)(LyV) 20

Connection to passivity:
The system

& =f(x) + g(x)u
y=(LyV)'(x)
is passive with V'(x) as storage function if LV < 0 as

V=L;V+L,Vu<yTu

The feedback law u = —ky guarantees GAS if the system is ZSD (zero
state detectable).

Note: May be a conservative choice as it does not fully exploit the
possibility to choose V' (x) for the whole system (only & = f(x)).

Systems with saturations of control signal

Problem: System runs in “open loop” when in saturation

> Anti-windup designs from FRTNO5

» Consider Lyapunov function candidates of type V = log(1 + x2)
(see Lecture 1)

> Saturated controls [Sussmann, Yang And Sontag]

» Cascaded saturations [Teel et al]

Feedforward systems

Particular form of cascaded systems

1991 A. Teel
... Sussman, Sontag, Yang
... Saberi, Lin

1996 Mazenc, Praly
1996 Sepulchre, Jankovic, Kokotovic

Strict-feedforward systems

&1 = %9 + f1(w2, x3,..., Xy, 1)

%o = x3 + fa(xs, ..., Xn, u)

Xp—1 = Xp + fnfl(xn; u)

-0 ~Of
= E
| ]




Compare with e.g.
Strict-feedback systems

%1 = x2 + f1(x1)
Kp = x3 + fa(x1, x2)

Xp = Xp + fn(xl; X2, ... xn—l) +u

Strict-feedforward systems are, in general, not feedback linearizable!
(i.e., neither exact linearization nor backstepping is applicable for
stabilization)

Restriction: Does not cover systems of the type

xp = —x% + ...

i.e. don’'t have to worry about

finite escape-time

Sussman and Yang (1991) :
There does not exist any (simple) saturated feedback-law which stabilizes
an integrator chain of order > 3 globally.

Teel’s idea:
using nested saturations

u = —0p(hn(x) + op—1(hp-1(x) + --- + 01(h1(x))...)

Definition: o is a linear saturation for (L, M) if
» 0 is continuous and nondecreasing
> o(s)=swhen|s|< L
> |o(s) <M. Vs€ R

Theorem (Teel):

For an integrator chain of any order and for any set {(L;, M;)} where
L; < M;and M; < %LH.L there exists {&;} for all linear saturations
{0:} such that the bounded control

u = —0n(hn(x) + on_1(hn-1(x) +--- + 01(h1(x))...)

results in global asymptotic stability for the closed loop system.

Sketch of proof: (n=3, L; = M;)
Consider a state transformation y = T'x which transforms the integrator
chain into

y=Ay+ Bu
where
011 1
A=1]0 0 1|,B=|1
000 1

The control law
u = —o3(y3 + 02(y2 + 01(y1)))
will give the closed loop system

y1=y2+y3 —03(y3 +02(y2 + 01(31)))
Y2 =y3 —03(y3 + 02(y2 + 01(y1)))
y3 = —03(ys + 02(y2 + 01(y1)))

How does y3 evolve ?
Let Vs = y% =

V3 = —2y303(y3 + 02(y2 + 01(y1)))

AS |0’2()| < My < %Lg,,
V3 < 0 for all |ys| > %L3

= |y3| will decrease.

In finite time |y3| will be < %L3 and o3 will now operate in the linear
region.
(Note: no finite escape for the other states.)

Y2 = y3 — (¥3 + 02(y2 + 01(y1)))
= —02(y2 + 01(y1)))

Same kind of argument shows us that after finite time, the closed loop will
look like

y1=-X
Y2 = —Y1— Y2

Y3=—Y1—Y2—Us3
i.e. after a finite time, the dynamics are exponentially stable
Remark:

Although we have found a globally stabilizing, bounded, control law, u, the
internal states may have huge overshoots !!

Integrator forwarding

strict-feedforward systems

&1 = %9 + f1(x2, x3,. .., %y, 1)

Xp—1 = Xp + fn—l(xn; u)
Ap=1Uu
Due to the lack of feedback connections, solutions always exists and are of
the form
t

xn(t) = x,(0) +fo u(s)ds

o 1(£) = 3n_1(0) + fo (%a(5) + Fa1(%a(s), u(s)))ds

10




1. Begin with stabilizing the system %, = u,,
Useeg. V, = xﬁ andu, = —x,

2. Augment the control law
un—l(xn—l; xn) = un(xn) +vp—1
such that u,,—1 stabilizes the cascade

Xp—1= Xp + fn—l(xn; u)

Xp = Un—1

k. Augment the control law

ur (X, Xpt1) = un(Xps1) + g
such that u, stabilizes the cascade

Xp = Xp41 + fk()
Xpt1 = Frea(-.., up)

How is the cascade (in step k) stabilized?

We have a cascade of one GAS/LES system and a ISS-system with a
linear growth-condition.
There exists a Lyapunov function for the (sub-) system
1 (o)
Vi=Vir+ gt + [ m@AXen©)ds
0

It can be shown that Vk|uk:—Lng < 0 and finally 1 minimizes a cost
functional of the form

= . X u2 S
J_fo ((x) +u?)d

The cross-term can only be exactly evaluated for very simple systems. In
other cases it has to be numerically evaluated or approximated by i.e.
Taylor series

Connection to Teel’s results:

To avoid computations of the integrals we can use nested low-gain
(saturated) control.

Also showed to be GAS/LES for the integrator chain, but LAS/LES for the
general strict-feedforward system.

(Compare with high-gain design in backstepping)

Can use a feedback passivation design for a system if

1. A relative degree condition satisfied

2. The system is weakly minimum phase

Backstepping is a recursive way of finding a relative degree one output.

Integrator forwarding allows us to stabilize weakly non-minimum phase
systems.

Conclusions

> Global/semiglobal stabilization of strict-feedforward system
( No exact linearization possible )

» Tracking results reported
> Relaxes weakly minimum phase-condition

> Integration forwarding - “necessary” to simplify controller

Motivation: Simple example

Consider the following simple feedback system

[2] - [—03 ﬂ [2] * [-01] u=Av+Bu (X)
y= [1 0] x=Cx

u = sat(xz - (2 + sin®(¢)))

Example cont'd
> linear subsystem unstable
> input saturation = At best local stability.
Tools

Locally valid Quadratic Contraint (QC) (sector condition)

OS(Kz'xz—u)(u—.‘Cl'xz)=

o s [(8 5) (2)] ] e <
(02 -1]lu

K1 =1 Lower bound :
"linear feedback stability cond.”
u = Kxg, k € (1, 00)

Ke =3 Upper bound :

sector of nonlinearity
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Preliminaries

State feedback

Observer feedback
x = Ax + Bu
% = Ax + Bu = Ax + Bg(x) y=Cx
u = ¢(x) u = ¢(£)

Asymptotically stable for state feedback u = ¢(x)

Re-write with error dynamics (e = £ — x )

é=(A—LC)e
%= Ax+ Bg(x+e)+ LCe
u=¢(%)
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