
Synthesis, Nonlinear design

◮ Introduction
◮ Relative degree & zero-dynamics (rev.)
◮ Exact Linearization (intro)
◮ Control Lyapunov functions
◮ Lyapunov redesign
◮ Nonlinear damping
◮ Backstepping

◮ Control Lyapunov functions (CLFs)
◮ passivity
◮ robust/adaptive

Ch 13.1-13.2, 14.1-14.3 Nonlinear Systems, Khalil

The Joy of Feedback, P V Kokotovic

Why nonlinear design methods?

◮ Linear design degraded by nonlinearities (e.g. saturations)
◮ Linearization not controllable (e.g. pocket parking)
◮ Long state transitions (e.g. satellite orbits)
◮ Inherently nonlinear...

Relative degree

“ A system’s relative degree: How many times you need to take the
derivative of the output signal before the input shows up”

Note: A nonlinear system may have state-dependent relative degree.

Example: The ball and beam process (see process homepage for more
information).

If nothing else stated we assume a fixed relative degree in the sequel.

For a nonlinear system with relative degree d

ẋ = f (x) + �(x)u
y = h(x)

(1)

we have

ẏ = d
dt h(x) =

�h(x)
�x ẋ = �h�x f (x) +

�h
�x �(x)u

= L f h(x) + L�h(x)︸ ︷︷ ︸
=0 i f d>1

u

...
y(k) = Lkf h(x) if k < d (2)

...
y(d) = Ldf h(x) + L�L

(d−1)
f h(x)u

Using the same kind of coordinate transformations as for the feedback
linearizable systems above, we can introduce new state space variables,
ξ , where the first d coordinates are chosen as





ξ1 = h(x)
ξ2 = L f h(x)
...
ξd = L(d−1)

f h(x)

(3)

Under some conditions on involutivity, the Frobenius theorem guarantees
the existence of another (n− d) functions to provide a local state
transformation of full rank. Such a coordinate change transforms the
system to the normal form

ξ̇1 = ξ2
...

ξ̇d−1 = ξd
ξ̇d = Ldf h(ξ , z) + L�Ld−1

f h(ξ , z)u
ż = ψ(ξ , z)
y = ξ1

(4)

where ż = ψ(ξ , z) represent the zero dynamics of order n− d
[Byrnes+Isidori 1991].

Example (Zero dynamics for linear systems)

Consider the linear system

y = s− 1
s2 + 2s+ 1u (5)

with the following state-space description




ẋ1 = −2x1 + x2 +u
ẋ2 = −x1 −u
y = x1

(6)

We have the relative degree =1
Find the zero-dynamics, by assigning y " 0.

y " 0 [ x1 " 0 [ ẋ1 " 0 [ x2 + u = 0

[ ẋ2 = −u = x2

(7)

The remaining dynamics is an unstable system corresponding to the zero
s = 1 in the transfer function (5).
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Exact (feedback) Linearization

Idea: Transform the nonlinear system into a linear system by means of
feedback and/or a change of variables. After this, a stabilizing state
feedback is designed.

+

r v u y
Σu = β−1(·)

−L
x

z

x = T(z)

Inner feedback linearization and outer linear feedback control

For general nonlinear systems, feedback linearization comprises

◮ state transformation
◮ inversion of nonlinearities
◮ linear feedback

Simple example
ẍ = �

l sin(x) + cos(x)u

Put
u = 1

cos(x)(−
�
l sin(x) + v)

gives (locally)
ẍ = v

Design linear controller v = −l1x+−l2 ẋ, etc

State transformation
“More difficult” example, where we need a state transformation

ẋ1 = asin(x2)
ẋ2 = −x2

1 + u

Can not cancel asin(x2). Introduce

z1 = x1

z2 = asin x2

so that

ż1 = z2

ż2 = (−z2
1 + u)acos x2

Then feedback linearization is (locally) possible by

u = z2
1 + v/(acos(z2))

Feedback linearization (“nonlinear version of pole-zero cancellation”)

Feedback linearization can be interpreted as a nonlinear version of
pole-zero cancellations which can not be used if the zero-dynamics are
unstable, i. e., for nonminimum-phase system.

Linear systems: See paper [Middleton (1999) Automatica 35(5), "Slow stable open-loop poles: to

cancel or not to cancel"]

When to cancel nonlinearities?

ẋ1 = −x3
1 + u1

ẋ2 = x3
2 + u2

(8)

Nonrobust and/or not necessary.
However, note the difference between tracking or regulation!!

Will see later how “optimal criteria” will give hints.

“Matching” uncertainties

ẋ1 = x2
...

ẋn−1 = xd
ẋn = Ldf h(x, z) + L�Ld−1

f h(x, z)u
ż = ψ(x, z)
y = x1

(9)

Integrator chain and nonlinearities (+ zero-dynamics)
Note that uncertainties due to parameters etc. are
“collected in”

Ldf h(x, z) + L�Ld−1
f h(x, z)u

Achieving passivity by feedback ( Feedback passivation )
Need to have

◮ relative degree one
◮ weakly minimum phase

NOTE! (Nonlinear) relative degree and zero-dynamics invariant under
feedback!
Two major challenges:

◮ avoid non-robust cancellations
◮ make it constructive by finding matching input-output pairs

Exact Linearization

◮ Often useful in simple cases
◮ Important intuition may be lost
◮ Nonlinear version of "pole-zero cancellations"
◮ Related to “Lie brackets” and “flatness”
◮ Known under several different names, e.g.,

◮ Computed torque (robotics)
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From analysis to synthesis

Lyapunov criterion Search for (V, u) such that

�V
�x [ f + �u] < 0

IQC criterion Search for Q(s) and τ1, . . . ,τm such that
[

[T1 + T2QT3](iω)
I

]∗ [∑

k

τkΠk(iω)
]

[

[T1 + T2QT3](iω)
I

]

< 0

forω ∈ [0,∞]

In both cases, the problem is non-convex and hard.
Heuristic idea: Iterate between the arguments

Convexity for state feedback

Problem Suppose α ≤ φ(v)/v ≤ β . Given the system

ẋ = fu(x) := Ax+ Eφ(Fx) + Bu

find u = −Lx and V(x) = xT Px such that
�V
�x fu(x) < 0

Solution Solve for P, L

(A+αEF − BL)T P + P(A+αEF − BL) < 0
(A+ β EF − BL)T P + P(A+ β EF − BL) < 0

or equivalently convex in (Q, K) = (P−1, LP−1)

(AQ+αEFQ− BK)T + (AQ+αEFQ− BK) < 0
(AQ+ β EFQ− BK)T + (AQ+ β EFQ− BK) < 0

Control Lyapunov Function (CLF)

A positive definite radially unbounded C1 function V is called a CLF for the
system ẋ = f (x, u) if for each x ,= 0, there exists u such that

�V
�x (x) f (x, u) < 0 (Notation: L f V(x) < 0)

When f (x, u) = f (x) + �(x)u, V is a CLF if and only if

L f V(x) < 0 for all x ,= 0 such that pL�V(x)p = 0

Example

Check if V(x, y) = [x2 + (y+ x2)2]2/2 is a CLF for the system
{

ẋ = xy
ẏ = −y+ u

L f V(x, y) = x2y+ (y+ x2)(−y+ 2x2y)
L�V(x, y) = 2(y+ x2)[x2 + (y+ x2)2]

L�V(x, y) = 0 [ y = −x2 [ L f V(x, y) = −x4 < 0 if (x, y) ,=

Sontag’s formula

If V is a CLF for the system ẋ = f (x) + �(x)u, then a continuous
asymptotically stabilizing feedback is defined by

u(x) :=





0 if L�V(x) = 0

− L f V+
√
(L f V)2+((L�V)(L�V)T)2
(L�V)(L�V)T [L�V ]T if L�V(x) ,= 0

Note: Can cancel factor L�V ,= 0 if scalar.

u(x) :=





0 if L�V(x) = 0

− L f V+
√
(L f V)2+(L�V)4
L�V (x) if L�V(x) ,= 0

Backstepping idea

Problem

Given a CLF for the system

ẋ = f (x, u)

find one for the extended system

ẋ = f (x, y)
ẏ = h(x, y) + u

Idea

Use y to control the first system. Use u for the second.

Note potential for recursivity

Motivation: Feedback Linearization

One of the drawbacks with feedback linearization is that exact cancellation
of nonlinear terms may not be possible due to e. g., parameter
uncertainties.

A suggested solution:

◮ stabilization via feedback linearization around a nominal model
◮ consider known bounds on the uncertainties to provide an additional

term for stabilization ( Lyapunov redesign )

Lyapunov Redesign

Consider the nominal system

ẋ = f (x, t) + G(x, t)u

with the known control law

u = ψ(x, t)

so that the system is uniformly asymptotically stable.

Assume that a Lyapunov function V(x, t) is known s.t.

α1(ppxpp) ≤ V(x, t) ≤ α2(ppxpp)
�V
�t +

�V
�x [ f (t, x) + Gψ] ≤ −α3(ppxpp)

3



Lyapunov Redesign — cont.

Perturbed system

ẋ = f (x, t) + G(x, t)[u+ δ ] (10)

disturbance δ = δ (t, x, u)

Assume the disturbance satisfies the bound

ppδ (t, x,ψ + v)pp ≤ ρ(x, t) + κ0ppvpp

If we know ρ and κ0 how do we design additional control v such that
u = ψ(x, t) + v stabilizes (10)?

The matching condition: perturbation enters at same place as control
signal u.

Apply u = ψ(x, t) + v

ẋ = f (x, t) +G(x, t)ψ + G(x, t)[v+ δ (t, x,ψ + v)] (11)

V̇ = �V�t +
�V
�x [ f (t, x) + Gψ] + �V�x G[v+ δ ] ≤

−α3(ppxpp) +
�V
�x G[v+ δ ]

Introduce w = [�V�xG]

V̇ ≤ −α3(ppxpp) + wTv+ wTδ

Choose v such that wTv+ wTδ ≤ 0:

Two alternatives presented in Khalil (pp · pp2-norm / pp · pp∞-norm)

Note: v appears at same place as δ due to the matching condition

Lyapunov Redesign — cont.

wTv+ wTδ ≤ wTv+ ppwT pp2ppδ pp2
wTv+ wTδ ≤ wTv+ ppwT pp1ppδ pp∞

Alternative 1:

If
ppδ (t, x,ψ + v)pp2 ≤ ρ(x, t) + κ0ppvpp2, 0 ≤ κ0 < 1

take
v = −η(t, x) w

ppwpp2
where η ≥ ρ/(1− κ0)

Alternative 2:

If
ppδ (t, x,ψ + v)pp∞ ≤ ρ(x, t) + κ0ppvpp∞, 0 ≤ κ0 < 1

take
v = −η(t, x) sgnw

where η ≥ ρ/(1− κ0)
Restriction on κ0 < 1 but not on growth of ρ.
Alt 1 and alt 2 coincide for single-input systems.

Note: control laws are discontinues fcn of x (risk of chattering)

Example: Matched uncertainty

u
+

$

x

∆

∫

φ(·)

ẋ = u+φ(x)∆(t)

Example cont.

Example:

Exponentially decaying disturbance ∆(t) = ∆(0)e−kt

linear feedback u = −cx, c > 0
φ(x) = x2

ẋ = −cx+ ∆(0)e−ktx2

Similar to peaking problem in the first lecture: Finite escape of
solution to infinity if ∆(0)x(0) > c+ k

We want to guarantee that x(t) stay bounded for all initial values x(0) and
all bounded disturbances ∆(t)

Nonlinear damping

Modify the control law in the previous example as:

u = −cx− s(x)x

where
−s(x)x

will be denoted nonlinear damping.

Use the Lyapunov function candidate V = x2

2

V̇ = xu+ xφ(x)∆
= −cx2 − x2s(x) + xφ(x)∆

How to proceed?

Choose
s(x) = κφ2(x)

to complete the squares!

V̇ = −cx2 − x2s(x) + xφ(x)∆

= −cx2 − κ
[

xφ − ∆
2κ

]2
+ κ · ∆2

4κ2 ≤ −cx2+∆2

4κ

Note! V̇ is negative whenever

px(t)p ≥ ∆
2
√
κc
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Can show that x(t) converges to the set

R =
{

x : px(t)p ≤ ∆
2
√
κc

}

i. e., x(t) stays bounded for all bounded disturbances ∆

Remark: The nonlinear damping −κxφ2(x) renders the system
Input-To-State Stable (ISS) with respect to the disturbance.

Young’s inequality

Let p > 1, q > 1 s.t. (p− 1)(q− 1) = 1,
then for all ε > 0 and all (x, y) ∈ pR2

xy < εp

p pxp
p + 1

qεq pyp
q

Standard case: (p = q = 2, ε2/2 = κ)

xy < κpxp2 + 1
4κ pyp

2

Our example:

xφ(x)∆(t) < κx2φ2(x) + ∆2(t)
4κ

Backstepping idea

Problem

Given a CLF for the system

ẋ = f (x, u)

find one for the extended system

ẋ = f (x, y)
ẏ = h(x, y) + u

Idea

Use y to control the first system. Use u for the second.

Note: potential for recursivity

Backstepping
Let Vx be a CLF for the system ẋ = f (x) + �(x)ȳ with corresponding
asymptotically stabilizing control law ȳ = φ(x). Then
V(x, y) = Vx(x) + [y− φ(x)]2/2 is a CLF for the system’

ẋ = f (x) + �(x)y
ẏ = h(x, y) + u

with corresponding control law

u = �φ
�x [ f (x) + �(x)y] −

�Vx
�x �(x) − h(x, y) + φ(x) − y

Proof.

V̇ = (�Vx/�x)( f + �y) + (y− φ) [h+ u− (�φ/�x) · ( f + �y)]
= (�Vx/�x)( f + �φ) + (y− φ)[(�Vx/�x)� − (�φ/�x) · ( f + �y) + h
= (�Vx/�x)( f + �φ) − (y− φ)2 < 0

Backstepping Example

For the system
{

ẋ = x2 + y
ẏ = u

we can choose Vx(x) = x2 and φ(x) = −x2 − x to get the control law

u = φ ′(x) f (x, y) − h(x, y) + φ(x) − y
= −(2x+ 1)(x2 + y) − x2 − x− y

with Lyapunov function

V(x, y) = Vx(x) + [y− φ(x)]2/2
= x2 + (y+ x2 + x)2/2

Example again (step by step)

{

ẋ1 = x1
2 + x2

ẋ2 = u(x) (12)

Find u(x) which stabilizes (12).

Idea : Try first to stabilize the x1-system with x2 and then stabilize the
whole system with u.

We know that if x2 = −x1 − x2
1

then x1 → 0 asymptotically ( exponentially )
as t→∞.

We can’t expect to realize x2 = α(x1) exactly, but we can always try to
get

t

he error→ 0.

Introduce the error states
{

z1 = x1

z2 = x2 −α1(x1)
(13)

where α1(x1) = −x1 − x2
1

[ ż1 = ẋ1 = z2
1 +

x2︷ ︸︸ ︷
z2 +α1(z1) =

= z2
1 + z2 − z2

1 − z1 = −z1 + z2

ż2 = ẋ2 − α̇1 = u(x) −
known︷︸︸︷
α̇1

α̇1 = d
dt(−z

2
1 − z1) = −z1 ż1 − ż1

= −z1(−z1 + z2) − (−z1 + z2) =
= z2

1 − z1z2 − z2 − z1

Start with a Lyapunov for the first subsystem (z1-dynamics):

V1 = 1
2 z

2
1 ≥ 0

V̇1 = z1 ż1 = −z2
1 + z1z2

Note :
If z2 = 0 we would achieve V1 = −z2

1 ≤ 0
with α1(x1)
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Now look at the augmented Lyapunov fcn for the error system

V2 = V1 +
1
2 z

2
2 ≥ 0

V̇2 = V̇1 + z2 ż2 =
= −z2

1 + z1z2 + z2(u− z2
1 + z1z2)

= −z2
1 + z2 (u− z2

1 + z1z2 + z2 + z1)︸ ︷︷ ︸
choose = −z2

= −z2
1 − z2

2 ≤ 0

so if u = z2
1 − z1z2 − z2 − z1

[ (z1, z2) → 0 asymptotically (exponentially)
[ (x1, x2) → 0 asymptotically

As z1 = x1 and z2 = x2 −α1 = x2 + x2
1 + x1 ,

we can express u as a ( nonlinear ) state feedback function of x1 and x2.

Backward propagation of desired control signal

eplacements
u

+
x1

x2
∫∫

f (·)

If we could use x2 as control signal, we would like to assign it to α(x1) to
stabilize the x1-dynamics.

u
+ +

x2

f +α
−α

x1∫ ∫

Move the control “backwards” through the integrator

u
+ +

f +α−dα/dt

x1
z2= x2 −α

∫ ∫

Note the change of coordinates!

Adaptive Backstepping

System :




ẋ1 = x2 + θγ (x1)
ẋ2 = x3

ẋ3 = u(t)
(14)

where γ is a known function of x1 and
θ is an unknown parameter

Introduce new (error) coordinates
{

z1(t) = x1(t)
z2(t) = x2(t) −α1(z1, θ̂)

(15)

where α1 is used as a control to stabilize the z1- system w.r.t a certain
Lyapunov-function.

Lyapunov function : V1 = 1
2 z1

2 + 1
2θ̃

2 where θ̃ = (θ̂ − θ) is the
parameter error

(Back-) Step 1:

ż1(t) =
x2︷ ︸︸ ︷

z2(t) +α1(z1, θ̂)+θγ (z1(t))

V̇1 = z1 ż1 + θ̃ ˙̂θ = z1(z2 +α1 + θγ ) + θ̃ ˙̂θ =
= z1[ z2 +α1 + θ̂γ︸ ︷︷ ︸

−z1

] + θ̃( ˙̂θ − z1γ︸︷︷︸
τ1

)

Choose α1 = −z1 − θ̂γ

[ V̇1 = −z2
1 + z1z2 + θ̃( ˙̂θ − τ1)

Note: If we used ˙̂θ = τ1 as update law
and if z2 = 0 then V̇1 = −z2

1 ≤ 0

Step 2: Introduce z3 = x3 −α2(z1, z2, θ̂) and
use α2 as control to stabilize the (z1, z2)-system

etc.

Observer backstepping

Observer backstepping is based on the following steps:

1. A (nonlinear) observer is designed which provides (exponentially)
convergent estimates.

2. Backstepping is applied to a system where the states have been
replaces by their estimates.
The observation errors are regarded as (bounded) disturbances and
handled by nonlinear damping.

Backstepping applies to systems in strict-feedback form

ẋ1 = f1(x1) + x2

ẋ2 = f2(x1, x2) + x3
...

ẋn = fn(x1, x2, . . . xn−1, xn) + u

Compare with
Strict-feedforward systems

ẋ1 = x2 + f1(x2, x3, . . . , xn, u)
ẋ2 = x3 + f2(x3, . . . , xn, u)

...
ẋn−1 = xn + fn−1(xn, u)
ẋn = u
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Nonlinear Control Synthesis cont’d

◮ Optimal and inverse(!) optimal design
◮ Saturated control and feedforwarding

Synthesis cont’d

◮ HJB
◮ Inverse optimal control
◮ Stabilization with Saturations
◮ Integrator forwarding
◮ Relations between the concepts

Optimality
Two main alternatives

◮ Pontryagin’s Maximum Principle (Necessary cond)
◮ Hamilton-Jacobi-Bellman (Dyn prog.) (Sufficient cond)

Based on Ch 18.5 [Glad & Ljung]

Find the state feedback law
u = k(x)

which solves minimization problem

minu
∫ t f

t0
(L(x, u)dt+φ(t f , x(t f ))

ẋ = f (x(t), u(t))
u ∈ U, t0 ≤ t ≤ t f

x(t0) = x0, ψ(t f , x(t f )) = 0

Assume that u∗ and x∗ solves this optimization problem.

Define V(t0, x0) as the optimal return function

V(t0, x0) =
∫ t f

t0
(L(x∗, u∗)dt+φ(t f , x∗(t f ))

if we start in (t0, x(t0) = x0)
Remark: Need to satisfy ...

Property of V :

If V is differentiable along a solution x(t), then

d
dtV(t, x(t)) + L(x(t), u(t)) ≥ 0 (16)

with equality for x∗ and u∗.

Assume that we for

◮ t ∈ [t0, t0 + h] use any control u(t)
◮ t ∈ [t0 + h, t f ] use optimal control u(t)∗

uu

u11 u∗12 u∗2

t0 t0t0 + h t0 + ht f t f
time time

The 0ptimization criterion becomes
∫ t0+h

t0
(L(x(r), u(r))dr+ V(t0 + h, x(t0 + h))

If optimal control from t0: V(t0, x(t0)) =[

V(t0, x(t0)) ≤
∫ t0+h

t0
(L(x(r), u(r))dr+ V(t0 + h, x(t0 + h))

which gives

V(t0 + h, x(t0 + h)) − V(t0, x(t0))
h + 1

h

∫ t0+h

t0
(L(x(r), u(r))dr ≥ 0

which in the limit h→ 0+ gives

d
dtV(t, x(t)) + L(x(t), u(t)) ≥ 0

Theorem: If the optimal return value V is differentiable it satisfies

− �V�t = minu∈U

(

�V
�x f (x, u) + L(x, y)

)

(17)

Proof: The chain rule gives

d
dtV(t, x(t)) = Vt + Vx f

and from Eq.(16) gives

−�V�t ≤
�V
�x f (x, u) + L(x, y)

with equality for optimal control u∗.

Eq.(17) is called
the Hamilton-Jacobi equation (HJ) for a finite t f
the Hamilton-Jacobi-Bellman equation (HJB) for t f = ∞.
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Remarks: Severe restriction to assume V differentiable (e.g., bang-bang
solutions for minimal time problems give "corners" in V but results can be
extended to this case as well.

◮ State feedback law

u = k(t, x) = arg minu∈U

(

�V
�x f (x, u) + L(x, y)

)

◮ Necessary conditions while Pontryagin gives sufficient.

Consider the system
ẋ = f (x) + �(x)u

Find u = u∗ such that

(i) u achieves asymptotic stability of the origin x = 0
(ii) u minimizes the cost functional

∫∞

0
(l(x) + uTR(x)u)dt (18)

where l(x) ≥ 0 and R(x) ≥ 0∀x.
For a given optimal feedback u(x)∗ the value of V depends on the initial
state x(0): V(x(0)) or simply V(x) (and start time according to previous
slides).

Theorem (Optimality and Stability)
Suppose there exist a C1-function V(x) ≥ 0 which satisfies the
Hamilton-Jacobi-Bellman equation

l(x) + L f V(x) −
1
4L�V(x)R

−1(L�V(x))T = 0

V(0) = 0
(19)

such that the feedback control

u∗(x) = −1
2R

−1(L�V(x))T

achieves asymptotic stability of the origin x = 0.

Then u∗(x) is the optimal stabilizing control which minimizes the cost (18).

Example:
Linear system

ẋ = Ax+ Bu

Cost Function

V =
∫∞

0
(xTCTCx+ uTRu)dt, R > 0

Riccati-equation

PA+ APT − PBR−1BT P + CTC = 0 (20)

If (A,B) controllable and (A,C) observable, then (20) has a unique solution
P = PT > 0 such that the optimal cost is V = xT Px and

u∗(x) = −R−1BT Px

is the optimal stabilizing control

5-min exercise:
Consider the system

ẋ = x2 + u

and the cost functional

V =
∫∞

0
(x2 + u2)dt

What is the optimal stabilizing control?

HJB:

x2 + �V�x x
2 − 1

4

(

�V
�x

)2
= 0, V(x) = 0

�V
�x = 2x2 ±

√
4x4 + 4x2

= 2x2+2x
√
x2 + 1

(21)

V(x) = 2
3 x

3 + 2
3(x

2 + 1)3/2 + C, C = −2/3 so that V(0) = 0 (22)

u∗(x) = −1
2
�V
�x = −x

2 − x
√
x2 + 1

Remark: We have chosen the positive solution in (21) as V(x) ≥ 0

Remark: If (A,B) stabilizable and (A,C) detectable then P is positive
semi-definite.
Example (non-detectability in cost)

System

ẋ = x+ u

Cost functional

V =
∫∞

0
u2dt

Riccati-eq
2P − P2 = 0, P = 0 or P = 2

Corresponding HJB

x�V�x −
1
4(
�V
�x )

2 = 0, V(0) = 0

V = 0 or V = 2x2
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Inverse optimality
A stabilizing control law u(x) solves an inverse optimal problem for the
system

ẋ = f (x) + �(x)u
if it can be written as

u(x) = −k(x)/2 = −1
2R

−1(x)(L�V(x))T , R(x) > 0

where V(x) ≥ 0 and

V̇ = L f V + L�V = L f V −
1
2L�Vk(x)︸ ︷︷ ︸
−l(x)

≤ 0

Then V(x) is the solution of the HJB-eqn

l(x) + L f V −
1
4(L�V)R

−1(L�V)T = 0

The underlying idea of formulating an inverse optimal problem is to get
some help to avoid non-robust cancellations and gain some stability
margins.

Example: Non-robust cancellation
Consider the system

ẋ = x2 + u

and the control law

un = −x2 − x [ ẋ = −x

However, if there is some small perturbation gain u = (1+ ε)un, we get

ẋ = −(1+ ε)x− εx2

This system may has finite escape time solutions.

How does u∗ from previous example behave?

Damping Control / Jurdjevic-Quinn

Consider the system
ẋ = f (x) + �(x)u

Assume that the drift part of the system is stable, i.e.,

ẋ = f (x), f (0) = 0

and that we know a function V(x) such that L f V ≤ 0 for all x.
How to make it asymptotically stable (robustly)?

To add more damping to the system to render it asymptotically stable the
following suggestion was made by Jurdjevic-Quinn (1978)

V̇ = L f V + L�Vu ≤ L�Vu

Choose
u = −κ · (L�V)T

It also solves the global optimization problem for the cost functional

V(x) =
∫∞

0
(l(x) + 2

κu
Tu)dt

for the state cost function

l(x) = −L f V +
κ
2 (L�V)(L�V)

T ≥ 0

Connection to passivity:
The system

ẋ = f (x) + �(x)u
y = (L�V)T(x)

is passive with V(x) as storage function if L f V ≤ 0 as

V̇ = L f V + L�Vu ≤ yTu

The feedback law u = −κy guarantees GAS if the system is ZSD (zero
state detectable).

Note: May be a conservative choice as it does not fully exploit the
possibility to choose V(x) for the whole system (only ẋ = f (x)).

Systems with saturations of control signal

Problem: System runs in “open loop” when in saturation

◮ Anti-windup designs from FRTN05
◮ Consider Lyapunov function candidates of type V = lo�(1+ x2)

(see Lecture 1)
◮ Saturated controls [Sussmann, Yang And Sontag]
◮ Cascaded saturations [Teel et al]

Feedforward systems

Particular form of cascaded systems

1991 A. Teel
... Sussman, Sontag, Yang
... Saberi, Lin

————————————
1996 Mazenc, Praly
1996 Sepulchre, Jankovic, Kokotovic

Strict-feedforward systems

ẋ1 = x2 + f1(x2, x3, . . . , xn, u)
ẋ2 = x3 + f2(x3, . . . , xn, u)

...
ẋn−1 = xn + fn−1(xn, u)
ẋn = u

+ + + 1/s1/s 1/s

fn−1 fn−2 f1
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Compare with e.g.
Strict-feedback systems

ẋ1 = x2 + f1(x1)
ẋ2 = x3 + f2(x1, x2)

...
ẋn = xn + fn(x1, x2, . . . xn−1) + u

Strict-feedforward systems are, in general, not feedback linearizable!
(i.e., neither exact linearization nor backstepping is applicable for
stabilization)

Restriction: Does not cover systems of the type

. . .
ẋk = −x2

k + ...
. . .

i.e. don’t have to worry about

finite escape-time

Sussman and Yang (1991) :
There does not exist any (simple) saturated feedback-law which stabilizes
an integrator chain of order ≥ 3 globally.

1/s 1/s 1/s

+++

−l1 −l2 −l3

Teel’s idea:
using nested saturations

u = −σn(hn(x) + σn−1(hn−1(x) + · · ·+ σ1(h1(x)) . . . )

Definition: σ is a linear saturation for (L, M) if

◮ σ is continuous and nondecreasing
◮ σ (s) = s when psp ≤ L
◮ pσ (s)p ≤ M , ∀s ∈ R

Theorem (Teel):
For an integrator chain of any order and for any set {(Li, Mi)} where
Li ≤ Mi and Mi < 1

2Li+1, there exists {hi} for all linear saturations
{σi} such that the bounded control

u = −σn(hn(x) + σn−1(hn−1(x) + · · ·+ σ1(h1(x)) . . . )

results in global asymptotic stability for the closed loop system.

Sketch of proof: (n=3, Li = Mi)
Consider a state transformation y = Tx which transforms the integrator
chain into

ẏ = Ay+ Bu

where

A =




0 1 1
0 0 1
0 0 0


 , B =




1
1
1




The control law

u = −σ3(y3 + σ2(y2 + σ1(y1)))

will give the closed loop system

ẏ1 = y2 + y3 −σ3(y3 + σ2(y2 + σ1(y1)))
ẏ2 = y3 −σ3(y3 + σ2(y2 + σ1(y1)))
ẏ3 = −σ3(y3 + σ2(y2 + σ1(y1)))

How does y3 evolve ?
Let V3 = y2

3 [

V̇3 = −2y3σ3(y3 + σ2(y2 + σ1(y1)))

As pσ2(.)p ≤ M2 < 1
2L3,

V̇3 < 0 for all py3p > 1
2L3

[ py3p will decrease.

In finite time py3p will be < 1
2L3 and σ3 will now operate in the linear

region.
(Note: no finite escape for the other states.)

ẏ2 = y3 − (y3 + σ2(y2 + σ1(y1)))
= −σ2(y2 + σ1(y1)))

Same kind of argument shows us that after finite time, the closed loop will
look like

ẏ1 = −y1

ẏ2 = −y1 − y2

ẏ3 = −y1 − y2 − y3

i.e. after a finite time, the dynamics are exponentially stable

Remark:
Although we have found a globally stabilizing, bounded, control law, u, the
internal states may have huge overshoots !!

Integrator forwarding

strict-feedforward systems

ẋ1 = x2 + f1(x2, x3, . . . , xn, u)
...

ẋn−1 = xn + fn−1(xn, u)
ẋn = u

Due to the lack of feedback connections, solutions always exists and are of
the form

xn(t) = xn(0) +
∫ t

0
u(s)ds

xn−1(t) = xn−1(0) +
∫ t

0
(xn(s) + fn−1(xn(s), u(s)))ds

...
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1. Begin with stabilizing the system ẋn = un
Use e.g. Vn = x2

n and un = −xn
2. Augment the control law
un−1(xn−1, xn) = un(xn) + vn−1
such that un−1 stabilizes the cascade

ẋn−1 = xn + fn−1(xn, u)
ẋn = un−1

...
k. Augment the control law
uk(xk, xk+1) = un(xk+1) + vk
such that uk stabilizes the cascade

ẋk = xk+1 + fk(. . . )
Ẋk+1 = Fk+1(. . . , uk)

How is the cascade (in step k) stabilized?

We have a cascade of one GAS/LES system and a ISS-system with a
linear growth-condition.

There exists a Lyapunov function for the (sub-) system

Vk = Vk+1 +
1
2 x

2
k +

∫∞

0
xk(s) fk(Xk+1(s))ds

It can be shown that V̇kpuk=−L�Vk < 0 and finally u1 minimizes a cost
functional of the form

J =
∫∞

0
(l(x) + u2)ds

The cross-term can only be exactly evaluated for very simple systems. In
other cases it has to be numerically evaluated or approximated by i.e.
Taylor series

Connection to Teel’s results:
To avoid computations of the integrals we can use nested low-gain
(saturated) control.
Also showed to be GAS/LES for the integrator chain, but LAS/LES for the
general strict-feedforward system.

(Compare with high-gain design in backstepping)

Can use a feedback passivation design for a system if

1. A relative degree condition satisfied
2. The system is weakly minimum phase

Backstepping is a recursive way of finding a relative degree one output.

Integrator forwarding allows us to stabilize weakly non-minimum phase
systems.

Conclusions

◮ Global/semiglobal stabilization of strict-feedforward system
( No exact linearization possible )

◮ Tracking results reported
◮ Relaxes weakly minimum phase-condition
◮ Integration forwarding - “necessary” to simplify controller

Motivation: Simple example

Consider the following simple feedback system





[

ẋ1
ẋ2

]

=
[

0 1
−3 1

] [

x1
x2

]

+
[

0
−1

]

u = Ax+ Bu (Σ)

y =
[

1 0
]

x = Cx

u = sat(x2 · (2+ sin2(t)))

Σ
y = Cxu

$
2+ sin2(t)

Example cont’d

◮ linear subsystem unstable
◮ input saturation [ At best local stability.

————————– Tools ————————-

Locally valid Quadratic Contraint (QC) (sector condition)
0 ≤ (κ2 · x2 − u)(u− κ1 · x2) =

[

x1 x2 u
]





(

0 0
0 −3

) (

0
2

)

(

0 2
)

−1









x1
x2
u



 for some px2p < c

κ1 = 1 Lower bound :
′linear feedback stability cond.′

u = κx2, κ ∈ (1,∞)
κ2 = 3 Upper bound :

sector of nonlinearity
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Preliminaries

State feedback





ẋ = Ax+ Bu = Ax+ Bφ(x)
y = Cx
u = φ(x)

Observer feedback





ẋ = Ax+ Bu
y = Cx
˙̂x = Ax̂+ Bu+ L(y− Cx̂)
u = φ(x̂)

Asymptotically stable for state feedback u = φ(x)
Re-write with error dynamics ( e = x̂− x )





ė = (A− LC)e
ẋ = Ax+ Bφ(x+ e) + LCe
u = φ(x̂)
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