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L1: Functional minimization, Calculus of variations (CV) problem

L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):
Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):
Study and present your own optimal control problem.
Written take-home exam (60%).

Summary of L1

• J(y) =
� b

a L(x, y(x), y�(x))dx, y(a) = y0, y(b) = y1.

• First-order necessary condition ⇔ Euler-Lagrange equation

• Alternative form of Euler-Lagrange equation and Hamiltonian

• Weak extrema (necessary conditions are for strong extrema too)

• Variable-endpoint problems

Outline

• Constrained calculus of variations problems

• Second order conditions

• Weierstrass necessary condition for strong extrema

• Cost functional in optimal control problems

Variational problems with constraints

• Euler-Lagrange equation for basic CV problems
unconstrained except for the boundary conditions

• Equality constraints are now imposed.
• Integral constraints

� b

a
M(x, y(x), y�(x))dx = C0

• Non-integral constraints M(x, y(x), y�(x)) = C0

Dido’s isopermetric problem

A legend about the foundation of Carthage around 850 B.C.
Dido was allowed to have the land along the North Africa coastline that
could be enclosed by an oxhide. She sliced the hide into very thin
strips so that she was able to enclose a large area.

• Assume a straight coast line.

• Maximize the area given by

J(y) =
� b

a
y(x)dx, y : [a, b] → R.

• Constraint:
• y(a) = y(b) = 0,

•
� b

a

�
1 + (y�(x))2 dx = C0.

y

x
a b

y(x)

The pendulum

Recall Hamilton’s principle of least action in L1. Trajectories of motion
for the pendulum are given by solving the following minimization
problem:

minimize
� t1

t0

�1
2m(ẋ2 + ẏ2) − mgy

�
dt

subject to M(x, y) := x2 + y2 − l2 = 0.

x

y

m

θ l

Constrained optimization - Lagrange mulipliers

First-order necessary condition for constrained optimality:

∇f(x∗) + λ∗
1∇h1(x∗) + · · · + λ∗

m∇hm(x∗) = 0.

For x ∈ R2, (i.e., minimize f(x1, x2) subject to h(x1, x2) = 0)

∇f(x∗
1, x∗

2) = −λ∇h(x∗
1, x∗

2)

f(x1, x2) = c1

f(x1, x2) = c2

h(x1, x2) = 0

∇f

∇h

∇f

∇h
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Integral constraints

C(y) :=
� b

a

M(x, y(x), y�(x))dx = C0.

• Dido’s problem, catenary example.

• For η to be admissible, C(y + αη) = C0 for α ≈ 0
• ⇒ δC(y, η) = 0.

• ⇒
� b

a
(My(x, y(x), y�(x)) − d

dx My�(x, y(x), y�(x)))η(x) dx = 0.

• δJ(y, η) = 0 for every η satisfying the above equation.

� b

a

�
Ly − d

dx
Ly�

�
η(x) dx = 0 ∀η s.t.

� b

a

�
My − d

dx
My�

�
η(x) dx = 0.

⇒
�

Ly − d

dx
Ly�

�
+ λ∗

�
My − d

dx
My�

�
= 0 ∀x ∈ [a, b].

Integral constraints cont.

�
Ly − d

dx
Ly�

�
+ λ∗

�
My − d

dx
My�

�
= 0

=⇒ (L + λ∗M)y = d

dx
(L + λ∗M)y�

• Euler-Lagrange equation for augmented Lagrangian L + λ∗M .

• Some gaps in the argument - see [Liberzon 2.5.1].

• We have to be careful with the case y is the extremal of C.
(i.e., My − d

dxMy� = 0 )

Example

minimize J(y) =
� 1

0
L(x)dx

subject to C(y) =
� 1

0

�
1 + (y�(x))2 dx = 1, y(0) = y(1) = 0.

• The only admissible curve is y ≡ 0. ⇒ y∗ ≡ 0 for any L.
• (My − d

dxMy�)|y=0 = − d
dx

y�(x)√
1+(y�(x))2

��
y=0 = 0.

• (Ly − d
dxLy�)|y=0 = 0 ? not necessarily.

Modified augmented cost:

λ∗
0J + λ∗C =

� b

a
(λ∗

0L + λ∗M)dx, (λ∗
0, λ∗) �= (0, 0).

• λ∗
0 = 0 ⇒ y is an extremal of C.

• λ∗
0 �= 0 ⇒ y is an extremal of J + (λ∗/λ∗

0)C.
• λ∗

0: abnormal multiplier

Non-integral constraints

M(x, y(x), y�(x))dx = 0 ∀x ∈ [a, b].

• Euler-Lagrange eq. for augmented Lagrangian L + λ∗(x)M .

• Similar to the integral constraint case (L + λ∗M )

• Instead of the entire interval, the Euler-Lagrange equation holds
for every x ∈ [a, b].

• ⇒ A different multiplier for each x ∈ [a, b].

Second-order conditions

• J(y + αη) = J(y) + δJ(y, η)α + δ2J(y, η)α2 + o(α2).
• Second-order necessary condition for optimality (Legendre’s

condition)

δ2J(y, η) ≥ 0 =⇒ Ly�y�(x, y(x), y�(x)) ≥ 0, ∀x ∈ [a, b]
• Second-order sufficient condition for optimality

δJ(y) = 0 and δ2J(y, η) > 0
=⇒ Ly = d

dx Ly� and Ly�y�(x, y(x), y�(x)) > 0, ∀x ∈ [a, b]
and [a, b] contains no points conjugate to a.

• Careful arguments required to deal with o(α2) [Liberzon 2.6].

Legendre’s condition and the Hamiltonian maximization

Recall that for the momentum p := Ly�(x, y, y�) and the Hamiltonian
H(x, y, y�, p) := p · y� − L(x, y, y�),

• Hy� = 0. ⇒ H has a stationary point as a function of y� along an
optimal curve (x, y(x), p fixed).

• H∗(z) := p · z − L(x, y, z) then dH∗
dz (y�(x)) = 0.

• This stationary point is actually a maximum (⇒ the maximum
principle, L3 – L4)

Since Hy�y� = −Ly�y� ≤ 0 (Legendre’s condition), or

d2H∗(z)
dz2 (y�(x)) = −Ly�y�(x, y(x), y�(x)) ≤ 0,

if the stationary point is an extremum, it must be a maximum.

Necessary conditions for strong extrema

• Weak minima over C1 cureves so far

• Stronger notions of local optimality over less regular curves
needed

• Strong minima over piecewise C1 curves

• Continuous y, a finite number of points of discontinous y�

– corner points

• Such y is a candidate of minima.

Example

Minimize

J(y) =
� 1

−1
y2(x)(y�(x) − 1)2dx

subject to
y(−1) = 0, y(1) = 1.

• Clearly J(y) ≥ 0 ∀y.

• We can find y ∈ C1 s.t. J(y) ≈ 0 but not J(y) = 0.

• Instead, the curve

y(x) =
�

0 if − 1 ≤ x < 0
x if 0 ≤ x < 1

gives J(y) = 0.
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Necessary conditions for strong extrema

• Weak minima over C1 cureves so far

• Stronger notions of local optimality over less regular curves
needed

• Strong minima over piecewise C1 curves

• Continuous y, a finite number of points of discontinous y�

– corner points

• Such y is a candidate of minima.

• Euler-Lagrange equation (integral form) must hold at all
noncorner points. (extremals, broken extremals)

• What else?

A perturbation of an extremal with a corner

Corner points

A corner point is a point c ∈ [a, b] such that y�(c−) := limx�c y�(x)
and y�(c+) := limx�c y�(x) both exists but have different values.

y1

y1 + αη1

y2

y2 + αη2

a c c + αΔx b x

y

y(·, α)

y1 : [a, c] → R
y2 : [c, b] → R

(linear) extrapolation
y1(c) = y(c)
y�

1(c) = y�(c−)

• η1(a) = η2(b) = 0, η1, η2 ∈ C1.

• The corner point location not fixed – deviate from c.

Weierstrass-Erdmann corner conditions

y1

y1 + αη1

y2

y2 + αη2

a c c + αΔx b x

y

y(·, α)

y1 : [a, c] → R
y2 : [c, b] → R

(linear) extrapolation
y1(c) = y(c)
y�

1(c) = y�(c−)

Weierstrass-Erdmann corner conditions
If a curve y is a strong extremum, then Ly� and y�Ly� − L must be
continuous at each corner point of y.

i.e., their discontinuities are removable.

Weierstrass excess function

Weierstrass excess function, or E-function:

E(x, y, z, w) := L(x, y, w) − L(x, y, z) − (w − z)Lz(x, y, z)

Weierstrass necessary condition for a strong minimum

y is a strong minimum =⇒ E(x, y(x), y�(x), w) ≥ 0.

for all noncorner points x ∈ [a, b]and all w ∈ R.

L(x, y, w)

y� w

E(x, y, y�, w)

Weierstrass necessary condition and Hamiltonian

E(x, y, z, w) = L(x, y, w) − L(x, y, z) − (w − z)Lz(x, y, z)
= zLz(x, y, z) − L(x, y, z) − (wLz(x, y, z) − L(x, y, w))
= H(x, y, z, p) − H(x, y, w, p)

where p = Lz(x, y, z). Hence, the Weierstrass necessary condition
implies

E(x, y(x), y�(x), w) = H(x, y(x), y�(x), p(x))−H(x, y(x), w, p(x)) ≥ 0.

interpretation: if y(·) is an optimal trajectory and p(·) is the
corresponding momentum, ∀x, H(x, y(x), ·, p(x)) has a maximum at
y�(x).

From calculus of variations to optimal control

x x

y y

Calculus of variations

• curves given a priori

• curves parameterized by
the spacial variable x

Optimal control

• a particle drawing a trace of its
motion

• y� = u, i.e., optimal control
decision at each point

• curves parameterized by time t

Brachistochrone

Find the shortest possible time to travel from one point to the other in a
vertical plane.

Calculus of variations ([Liberzon 2.1.4], E1):

minimize J(y) =
� b

a

�
1 + (y�(x))2
�

2gy(x)
dx

subject to y(a) = 0, y(b) = y1.

Optimal control:

minimize J(u1, u2) = t1 − t0 =
� t1

t0
1dt

subject to (ẋ, ẏ) = (u1
�

2gy, u2
�

2gy),
(x(t0), y(t0)) = (a, 0),
(x(t1), y(t1)) = (b, y1),
u2

1 + u2
2 = 1. (speed constraint)

Optimal control problem formulation

Find a control u ∈ U ⊂ Rm that minimizes the cost

J(u) :=
� tf

t0
L(t, x(t), u(t))� �� �

running cost

dt + K(tf , xf )
� �� �
terminal cost

subject to
ẋ = f(t, x, u), x(t0) = x0, x ∈ Rn.
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Cost functional

• Bolza form: J(u) =
� tf

t0 L(t, x(t), u(t))dt + K(tf , xf )
• Lagrange form: K ≡ 0, Mayer form: L ≡ 0

Bolza form to Mayer form: introduce an extra state variable x0 via

ẋ0 = L(t, x(t), u(t)), x0(t0) = 0.

⇒
� tf

t0
L(t, x(t), u(t))dt + K(tf , xf ) = x0(tf ) + K(tf , xf ).

Bolza form to Lagrange form:

J(u) =
� tf

t0

�
L(t, x(t), u(t)) + d

dt
K(t, x(t))

�
dt + K(t0, x0).

K(t0, x0): a constant independent of u
→ can be removed from the optimization problem.

Target set

J(u) :=
� tf

t0
L(t, x(t), u(t))dt + K(tf , xf )

• t0, x0 are fixed.

• tf , xf can be free or fixed, or can belong to some set.

• Captured by introducing a target set S ⊂ [t0, ∞) × Rn.

• tf : the smallest time s.t. (tf , xf ) ∈ S.

Free-time, fixed-endpoint: S = [t0, ∞) × {x1}, x1 ∈ Rn.

Fixed-time, free-endpoint: S = {t1} × Rn, t1 ∈ [t0, ∞).

Fixed-time, fixed-endpoint: S = {t1} × {x1}.

Free-time, free-endpoint: S = [t0, ∞) × Rn.

Calculus of variations vs optimal control

Perturbation

Consider S = {t1} × Rn, u ∈ U = Rm (unconstrained).

J(u) =
� t1

t0
L(t, x(t), u(t))dt + K(x(t1))

ẋ = f(t, x, u), x(t0) = x0. (1)

• x = x∗ + αη needs to satisfy (1), but hard to characterize such η.

• u is the design variable – makes more sense to perturb u.

• u = u∗ + αξ

• characterize η s.t. the solution of (1) for such u is
x = x∗ + αη + o(α).

• η̇ = fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ, η(t0) = 0. ([Liberzon 3.4.1])

Augmented cost and Hamiltonian

J(u) =
� t1

t0
(L(t, x(t), u(t)) + p(t) · (ẋ(t) − f(t, x, u))) dt+K(x(t1))

• p : C1([t0, t1] → Rn).

• Recall the Lagrange multiplier function λ(·).

• Also closely related to the momentum defined in L1.

Define the Hamiltonian (in optimal control setting) by

H(t, x, u, p) := �p, f(t, x, u)� − L(t, x, u)

⇒ J(u) =
� t1

t0
(�p, ẋ� − H(t, x(t), u(t), p(t))) dt + K(x(t1))

We want to compute δJ(u∗, ξ) of J in this form.

First variation

J(u) =
� t1

t0
(�p, ẋ� − H(t, x(t), u(t), p(t))) dt + K(x(t1))

• J(u∗ + αξ) − J(u∗) = δJ(u∗, ξ)α + o(α)
•

� t1
t0

�p(t), ẋ(t) − ẋ∗(t)�dt – integration by parts

• H(t, x∗ + αη + o(α), u∗ + αξ, p) − H(t, x∗, u∗, p)
• K(x∗(t1) + αη(t1) + o(α)) − K(x∗(t1))

δJ(u∗, ξ) = −
� t1

t0
(�ṗ + Hx(t, x∗, u∗, p), η� + �Hu(t, x∗, u∗, p), ξ�) dt

+ �Kx(x∗(t1)) + p(t1), η(t1)�
where η̇ = fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ, η(t0) = 0.

First-order necessary condition for optimality

δJ(u∗, ξ) = −
� t1

t0
(�ṗ + Hx(t, x∗, u∗, p), η� + �Hu(t, x∗, u∗, p), ξ�) dt

+ �Kx(x∗(t1)) + p(t1), η(t1)�

Pick a special p = p∗ s.t.

ṗ∗ = −Hx(t, x∗, u∗, p∗), p∗(t1) = −Kx(x∗(t1))

⇒ δJ(u∗, ξ) = −
� t1

t0
�Hu(t, x∗, u∗, p∗), ξ�dt

δJ(u∗, ξ) = 0 ∀ξ implies

Hu(t, x∗(t), u∗(t), p∗(t)) = 0 ∀t ∈ [t0, t1].

H(t, x∗(t), ·, p∗(t)) has a stationary point (maximum, in fact) at u∗(t)
for all t.

Hamilton’s canonical equations

The joint evolution of x∗ and p∗ is governed by

ẋ∗ = Hp(t, x∗, u∗, p∗)
ṗ∗ = −Hx(t, x∗, u∗, p∗)

(Note: H(t, x, u, p) = �p, f(t, x, u)� − L(t, x, u).)

• p is called the adjoint vector.

ṗ∗ = −(fx(t, x∗, u∗))T p∗ + L(t, x∗, u∗).

Compare with η̇ = fx(t, x∗, u∗)η + fu(t, x∗, u∗)ξ.

• p is also called the costate as we can think of p as acting on the
state velocity vector by �p, ẋ�.

Necessary conditions for optimality (conjecture)

If u∗(·) an optimal control and x∗(·) the corresponding optimal state
trajectory, ∃p∗ s.t.:

1) x∗ and p∗ satisfy, w.r.t. H(t, x, u, p) = �p, f(t, x, u)� − L(t, x, u),

ẋ∗ = Hp(t, x∗, u∗, p∗)
ṗ∗ = −Hx(t, x∗, u∗, p∗),

with x∗(t0) = x0, p∗(t1) = −Kx(x∗(t1)).

2) For each fixed t, the function u �→ H(t, x∗(t), u, p∗(t)) has a
(local) maximum at u = u∗(t):

H(t, x∗(t), u∗(t), p∗(t)) ≥ H(t, x∗(t), u, p∗(t))

for all u near u∗(t) and all t ∈ [t0, t1].
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