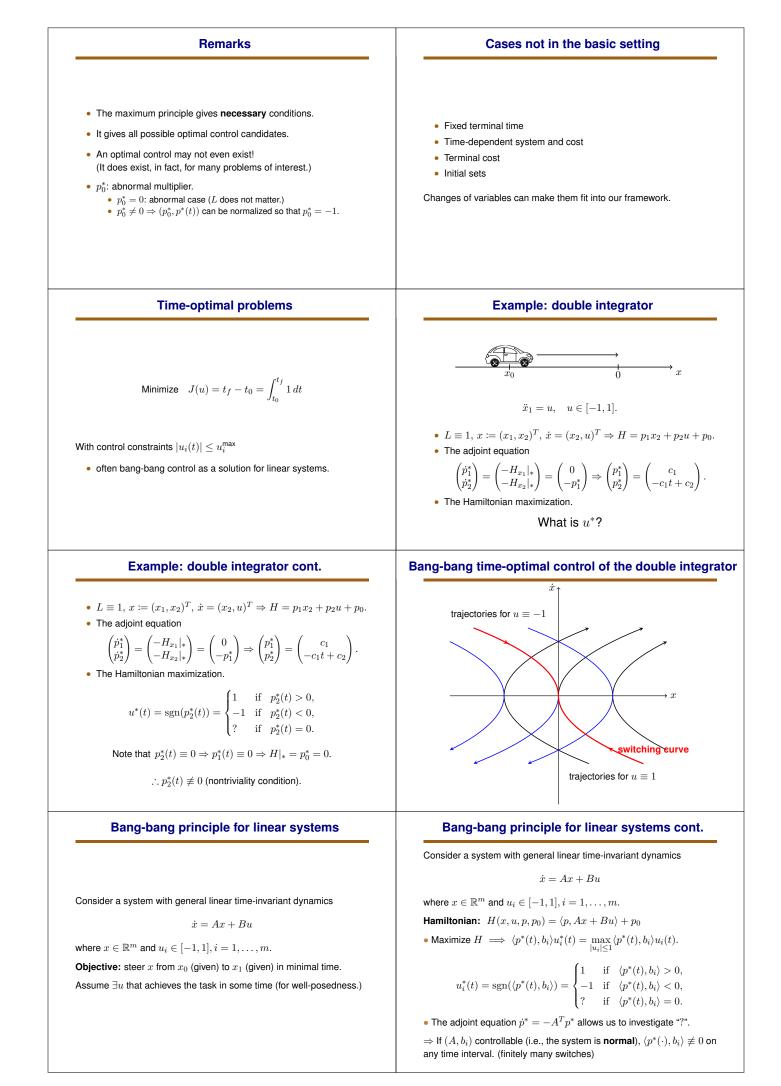
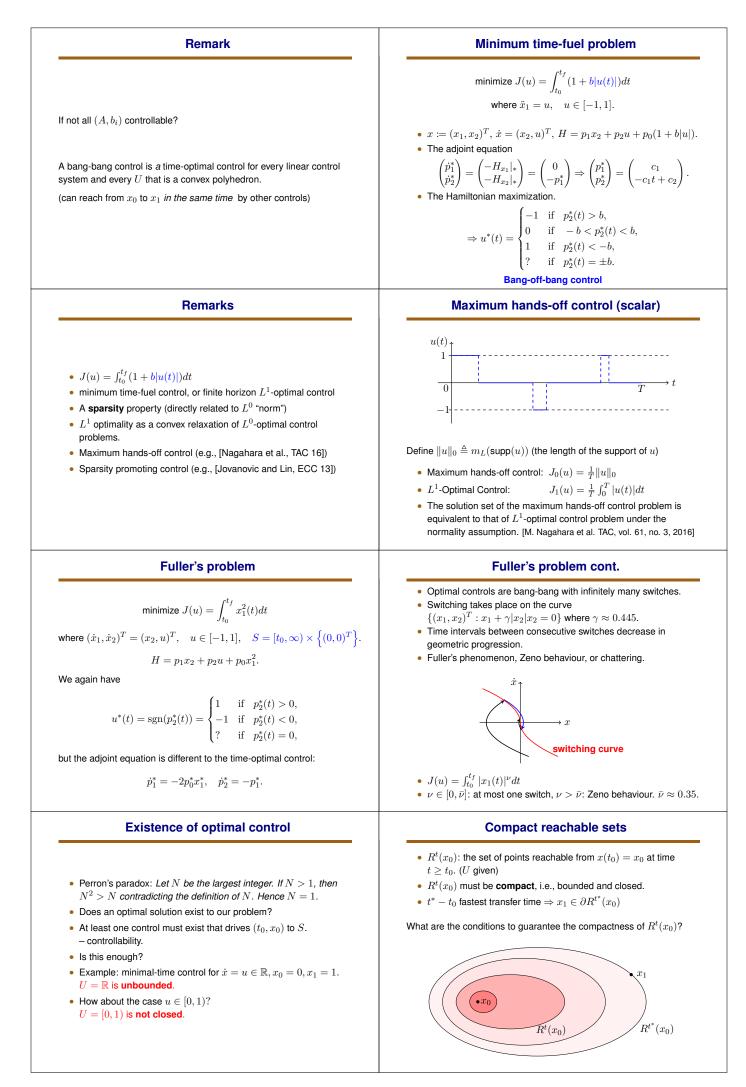
Optimal Control 2018 Kaoru Yamamoto	 Optimal Control 2018 L1: Functional minimization, Calculus of variations (CV) problem L2: Constrained CV problems, From CV to optimal control L3: Maximum principle, Existence of optimal control L4: Maximum principle (proof) L5: Dynamic programming, Hamilton-Jacobi-Bellman equation L6: Linear quadratic regulator L7: Numerical methods for optimal control problems Exercise sessions (20%): Solve 50% of problems in advance. Hand-in later. Mini-project (20%): Study and present your own optimal control problem. Written take-home exam (60%).
 Calculus of variations problems Integral, non-integral constraints, Lagrange multipliers Piecewise C¹ curves, corner points, necessary conditions for strong extrema Optimal control via calculus of variations The first variation and the Hamiltonian Conjectured necessary conditions for optimality (Hamiltonian maximization) 	 U = ℝ^m guarantees u* to be an interior point. What if U has a boundary and u* ∈ ∂U? The Hamiltonian still takes a maximum at u*(t) but cannot be established by variational approach. S = {t₁} × {x₁} instead of S = {t₁} × ℝⁿ ⇒ Admissible ξ changes and δJ(u*,ξ) = - ∫^{t₁}_{t₀}⟨H_u(t, x*, u*, p*),ξ⟩dt = 0 is no longer strong enough to conclude H_u(t, x*, u*, p*) ≡ 0. Differentiability of H w.r.t. u was assumed ⇒ differentiability of J and L is assumed. e.g., J(u) = ∫^{t₁}_{t₀} u(t) dt not allowed. Only small deviation in both x and u allowed. Some reasonable control laws left out.
Outline	Basic problem formulation
 Maximum principle for basic fixed-endpoint control problem basic free-endpoint control problem Other types of problems by change of variables Time-optimal control problems and related problems linear systems ⇒ often bang-bang principle Minimun time-fuel control and bang-off-bang principle Fuller's problem and Zeno behavior A sparsity property of L⁰- and L¹- optimal control Maximum hands-off control Existence of optimal control necessary conditions could be misleading if no solution exists. 	Find a control $u \in U \subset \mathbb{R}^m$ that minimizes the cost $J(u) = \int_{t_0}^{t_f} \underbrace{L(x(t), u(t))}_{\text{time independent}} dt + K(x_f)$ where • $\dot{x} = \underbrace{f(x(t), u(t))}_{\text{time independent}}, x(t_0) = x_0, x \in \mathbb{R}^n, K(x_f) \equiv 0, (t_f, x_f) \in S$ • f, f_x, L, L_x continuous • Basic fixed-endpoint problem (BFEP) (t_f free, x_f fixed) $S = [t_0, \infty) \times \{x_1\}$ • Basic variable-endpoint problem (BVEP) (t_f free, $x_f \in S_1$) $S = [t_0, \infty) \times S_1$ $S_1 = \{x \in \mathbb{R}^n : h_1(x) = h_2(x) = \cdots h_{n-k}(x) = 0\}$ $h_i \in C^1(\mathbb{R}^n \to \mathbb{R}), i = 1, \dots, n - k.$
Maximum principle	Transversality condition
Define the Hamiltonian $H(x,u,p,p_0) = \langle p,f(x,u)\rangle + p_0L(x,u).$ Assume that the basic problem has a solution $(u^*(t),x^*(t))$. Then there exist a function $p^*:[t_0,t_f] \to \mathbb{R}^n$ and a constant $p_0^* \leq 0$	$\langle p^*(t_f), d \rangle = 0 \forall d \in T_{x^*(t_f)} S_1.$ (1
satisfying $(p_0^*, p^*(t)) \neq (0, 0) \ \forall t \in [t_0, t_f]$ and 1) $\dot{x}^* = H_p(t, x^*, u^*, p^*), \ \dot{p}^* = -H_x(t, x^*, u^*, p^*).$ 2) $H(x^*(t), u^*(t), p^*(t), p_0^*) \geq H(x^*(t), u(t), p^*(t), p_0^*)$ $\forall t \in [t_0, t_f], \ \forall u \in U.$ 3) $H(x^*(t), u^*(t), p^*(t), p_0^*) = 0 \ \forall t \in [t_0, t_f]$ 4) $\langle p^*(t_f), d \rangle = 0 \ \forall d \in T_{x^*(t_f)}S_1$ (Only for BVEP.) $T_{x^*(t_f)}S_1$: tangent space to S_1 . Transversality condition.	$T_{x^*(t_f)}S_1 = \{d \in \mathbb{R}^n : \langle \nabla h_i(x^*(t_f)), d \rangle = 0, i = 1, \dots n - k\}$ • (1) means $p^*(t_f)$ is a linear combination of $\nabla h_i(x^*(t_f))$. • $S_1 = \{x_1\} \implies$ (1) is true for all $p^*(t_f)$. • $S_1 = \mathbb{R}^n$ (i.e., $k = n$) $\implies p^*(t_f) = 0$. • In general, k degrees of freedom for $x^*(t_f)$ and $n - k$ degrees of freedom for $p^*(t_f)$.





Filippov's theorem

Filippov's theorem

Given a control system $\dot{x}=f(t,x,u),\,x(t_0)=x_0$ with $u\in U,$ assume that

- its solutions exist on $[t_0,t_f]$ for all controls $u(\cdot)$ and
- for every pair (t,x) the set $\{f(t,x,u): u\in U\}$ is compact and convex.

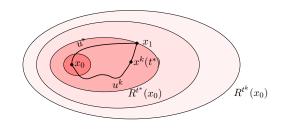
Then $R^t(x_0)$ is compact for each $t \in [t_0, t_f]$.

- A sufficient condition for compactness of reachable sets.
- applies to, e.g., $\dot{x} = f(x) + G(x)u$ with compact and convex U.
- For linear systems $\dot{x} = Ax + Bu$, $R^t(x_0)$ is compact if U is compact and convex.

Sketch of proof

Let $t^* = \inf\{t \ge t_0 : x_1 \in R^t(x_0)\}$. If $x_1 \in R^{t^*}(x_0)$, we are done.

- $\exists t_k \searrow t^*$ s.t. $x_1 \in R^{t_k}(x_0)$ with a corresponding u_k s.t. $x^k(t_k) = x_1$.
- Show that $x^k(t^*) \to x_1$ as $t_k \to t^*$.
- $\Rightarrow x_1 \in R^{t^*}(x_0)$ since the closedness property of $R^{t^*}(x_0)$ guaranteed by Filippov's theorem.



Existence of time-optimal controls for linear systems

Consider the linear control system

$$\dot{x} = Ax + Bu$$

 $u \in U$ compact and convex.

Objective: steer x from given $x(t_0) = x_0$ to given x_1 in minimal time. $x_1 \in R^t(x_0)$ for some $t \ge t_0 \implies$ a time-optimal control exists.

Information on Mini-project

- Date: March 20 (Tue)?
- Formulate your own optimal control problem.
- You can pair up.
- Solve the problem numerically. JModelica, or your preferred method.