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Introduction

◮ Essential in Motion Control
◮ Classics

Leonardo da Vinci (1452-1519
Amontons 1699
Coulomb 1785

◮ Tribology
◮ Control
◮ Physics AFM

◮ Surface force appartus SFA, Atomic force microscope AFM
◮ Nanopositioning

◮ Surface chemistry
◮ Geophysics - Earthquakes

Amontons’s Paradox

Observations
◮ Friction is proportional to normal load
◮ Friction does not depend on the apparent area of contact

xgot

The classical friction law F = µN

Application Areas

◮ Robotics
◮ Machine tools
◮ Valves and actuators
◮ Automobiles

Tire-road interaction
ABS
Traction control

◮ Excavators

◮ Antennas
◮ Telescopes
◮ Mechatronics
◮ Micro-mechanical systems
◮ Geophysics
◮ Surface physics
◮ Physiology

Very Complex Phenomena

Reasonably well understood phenomenologically
◮ Stiction, elastic deformation

Some phenomena
◮ Steady-state characteristics
◮ Pre-sliding displacement
◮ Hysteresis
◮ Varying break-away force
◮ Randomness—Repeatability

Much poorly explained
◮ Friction, surface roughness, and lubrication
◮ The Mica experiments

Some Friction Phenomena

Pre-sliding displacement

Varying break away force

Dwell time dependence

Hysteresis

Simple Mechanisms

Metal contact between asperities

Visualization of break away

The Bristle Model

An abstraction of asperities
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A Control Perspective

◮ Understand the effects on friction on control systems
◮ Typical phenomena

◮ Limit cycles
◮ Stick slip motion
◮ Hunting
◮ Lack of precision in tracking

◮ Modeling and Simulation
◮ Friction compensation
◮ Modeling for control

Friction Models and Friction Compensation

1. Introduction
2. Friction Models

Static models
Rate and state models
Dahl’s model
The Bliman-Sorine model

3. The LuGre Model
4. Effects of Friction on Control Systems
5. Friction Compensation
6. Summary

Friction Models

◮ Classical static models
◮ Coulomb friction
◮ Viscous friction
◮ Stiction

◮ Mechanics and fluid dynamics
◮ First principles
◮ Microscopical contact
◮ Viscosity

◮ Empirical phenomenological models
◮ The Dahl model
◮ The Bliman-Sorine model
◮ LuGre model

Static Models

a) Coulomb b) Coulomb + viscous c) stiction d) Stribeck effect
In practice there are often asymmetries!

Rate and State Models

Friction has been studied extensively in the Physics and Earth Quake
communities. The models are called rate and state models because
friction is a function of velocity v and another variable which is dynamically
related to velocity.
The Ruina-Rice model is a representative models it has the form

µ = µ0 + A log
(

1 +
v
v0

)

+ B log
(

1 +
θ/
θ0

)

dθ
dt

= 1− θv
d0

In steady state we have θ = d0/v and

µ = µ0 + A log
(

1 +
v
v0

)

+ B log
(

1 +
d0

vθ0

)

Dahl’s Model

◮ P. Dahl Aerospace Corporation 1968
◮ Extensive use in simulations in military projects
◮ Inspired by solid friction

Stress-strain curve

dF
dx

= σ
(

1− F
Fc

sgn v
)α

◮ σ stiffness
◮ α shape

σ0

˙ x > 0
˙ x < 0

slope

F

F

F

x

c

c

-

Ball Bearing Friction is Similar to Solid Friction Dahl’s Model - Continued

The stress-strain curve

dF
dx

= σ
(

1− F
Fc

sgn v
)α

Differentiate with respect to time

dF
dt

=
dF
dx

dx
dt

=
dF
dx

v = σ
(

1− F
Fc

sgn v
)α

v.

For α = 1
dF
dt

= σ v − σ F
Fc
pvp.

Introduce F = σ z then
dz
dt

= v − σ pvp
Fc

z,

F = σ z.
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Dahl’s Model - Steady State Properties

dz
dt

= v − σ pvp
Fc

z,

F = σ z.
In steady state

z =
Fc

σ sgn v

F = Fc sgn v

◮ The steady state version of Dahl’s model corresponds to Coulomb
friction.

Properties of The Dahl Model

◮ Simple dynamic model
◮ Used extensively in simulation studies
◮ Captures many phenomena

Zero slip displacement
Hysteresis

◮ Friction depends only on displacement
◮ Does not capture Stribeck effect
◮ Does not capture stick-slip
◮ Can we extend the model to include these effects?

The Bliman-Sorine Model

Idea:
◮ Generalize Dahl to obtain Stribeck effect
◮ Keep rate independence

The sliding variable

s =

∫ t

0
pv(τ)pdτ.

The model
dxs

ds
= Axs + Bvs

F = Cxs

A =

(

−1/(ηεf) 0
0 −1/εf

)

, B =

(

f1/(ηεf )
−f2/εf

)

, C =
(

1 1
)

,

Properties of the Bliman-Sorine Model

◮ Dahl models in parallel
◮ At least second order dynamics
◮ Captures many properties
◮ Captures stiction
◮ Friction depends on displacement
◮ Friction does not depend on velocity
◮ Related to hysteresis models

Friction Models and Friction Compensation

1. Introduction
2. Friction Models
3. The LuGre Model
4. Effects of Friction on Control Systems
5. Friction Compensation
6. Summary

The LuGre Model

Idea: Generalize Dahl to obtain Stribeck effect and stick-slip
The Dahl model

dz
dt

= v − σ pvp
Fc

z,

F = σ z.
The LuGre Model

dz
dt

= v − pvp
g(v)

z,

g(v) = lc + (ls − lc)e−pvp/vs

F = σ0z + σ1
dz
dt

+ σ3v

Other forms of F and g
possible

v

g

Bristle Interpretation

The variable z in the LuGre model can be interpreted as the average bristle
deflection!

dz
dt

= v − pvp
g(v)

z,

g(v) = lc + (ls − lc)e−pvp/vs

F = σ0z + σ1
dz
dt

+ σ2v

Variable z has dimension length

Steady State Properties of the LuGre Model

dz
dt

= v − σ0
pvp

g(v)
z,

F = σ0z + σ1
dz
dt

+ σ2v

In steady state z = 0 and v = v0 constant

z0 =
g(v0)

σ0
sgn v0

F = g(v) sgn v0 + σ2v0

The term σ2v represents viscous friction v

F
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Functions f and g Give Flexibility

dz
dt

= v − pvp
g(v)

z,

F = σ0z + σ1
dz
dt

+ f(v)

v

Fss = g(v) sgn(v) + f(v)

◮ Functions f and g can be chosen so that Fss matches measured
steady state friction

◮ Function Fss is often asymmetrical, easy to deal with

Theorem 1 - Boundedness of z

Assume that 0 < g(v) < a. Then Ω = {z : pzp ≤ a} is an invariant set
for the LuGre model. If pz(0)p < a then pz(t)p ≤ a for all t ≥ 0.
Proof
We have

dz
dt

= v − pvp
g(v)

z

For z = a we have

dz
dt

= v − pvp
g(a)

a ≤ v − pvp

dz/dt is thus either constant or negative and z cannot be larger than a.
Applying the same argument at z = −a gives the result.

Theorem 2 - Dissipativity

Consider the equation
dz
dt

= v − pvp
g(v)

z

The map φ : v → z is dissipative with respect to the energy function
V = z2/2.
Proof
Along trajetories of the differential eqution we have

V(t)− V(0) =
∫ t

0
z

dz
dt

dt =
∫ t

0
z
(

v − pvpz
g(v)

)

dt =
∫ t

0

(

zv − pvpz
2

g(v)

)

dt ≤
∫ t

0
zvdt

Hence ∫ t

0
zvdt ≥ V(t)− V(0)

Application of Constant Force

Consider a mass m and apply a constant force Fd

m
dv
dt

= Fd − F

dz
dt

= v − pvp
g(v)

z,

g(v) = lc + (ls − lc)e−pvp/vs

F = σ0z + σ1
dz
dt

+ σ2v
Hence

m
dv
dt

= Fd − σ0 − σ1
dz
dt

= −σ1v − σ0z + σ1
zpvp
g(v)

+ Fd

dz
dt

= v − zpvp
g(v)

Application of Constant Force

m
dv
dt

= −σ1v − σ0z + σ1
zpvp
g(v)

+ Fd = −σ1v − σ0z + zf(v) + Fd

dz
dt

= v − zpvp
g(v)

= v − zf(v)

Equilibria exists only for pFd p ≤ σ0ls

z =
Fd

σ0

v =
Fd pvp

σ0g(v)
, [ Fd = σ0g(v) sgn(v)

v

σ0g(v)

Two equilibria v = 0 or Fd = σ0g(v0) sgn(v0), with Fd = σ0z0 in both
cases. The second only for σ0lc ≤ pFd p ≤ σ0ls

Linearization

Linearization gives the dynamics matrix

A =





−σ1(1− zf ′)
m

−σ0 + σ1f
m

1− zf ′ −f





where f(v) = pvp/g(v). We have

traceA = −(1− zf ′)
σ1

m
− f

detA = (1− zf ′)
σ0

m

At the equilibrium v = 0, z = FD/σ0 we have f = f ′ = 0 and we get
traceA = −σ1/m and detA = σ0/m. The characteristic polynomial of
the A-matrix is

s2 +
σ1

m
s +

σ0

m

Model Parameters

For a mass m which moves subject to Coulomb friction we have

σ0lc = µmg

If we start by specifying lc we thus find that σ0 = µmg/lc. To find the
parameter σ1 we make the assumption that the polynomial

s2 +
σ1

m
s +

σ0

m

has roots with critical damping. Hence σ 2
1 = 4mσ2 or

σ1 = 2
√

mσ0 = 2m
√

µg
lc

Parameter ls is typically 50 to 100 % larger than lc. The friction model is
characterized by only two parameters µ and lc.

Simulation of Application of Force
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Properties of LuGre Model

◮ Almost as simple as the Dahl model
◮ Captures many aspects of friction

◮ Stiction
◮ Stick slip
◮ Stribeck
◮ Hysteresis
◮ Zero slip displacement

◮ But not all
◮ Some hysteresis related phenomena
◮ Item for research!

◮ Is passive if damping is velocity dependent
◮ Very important for control design

Friction Models and Friction Compensation

1. Introduction
2. Friction Models
3. The LuGre Model
4. Effects of Friction on Control Systems

Stick slip motion
Inverted pendulums
Servo systems

5. Friction Compensation
6. Summary

Effects of Friction in Motion Control

Friction can has both benefits and drawbacks
◮ Essential part in many drive mechanisms Capsubot
◮ Friction can give rise to oscillations and poor precision

Stick slip can occure whenever the mechanisms
◮ Stiction
◮ Instability

are present. Typical examples are
◮ Traditional stick-slip, spring is the instability mechanism
◮ Inverted pendulum, gravity is the instability mechanism
◮ Servo systems, integral is instability mechanism.

Hunting

−F
u

Friktion

1
s

1
ms

v xPID
xd

Σ

0 20 40 60 80 100
0

0.5

1

1.5

0 20 40 60 80 100

−1

0

1

Position x

Tid

F

Tid

Stick-slip Motion

A classic phenomena
k

F

x y

m

Equations of motion

m
d2x
dt2 = k(y − x)− F

dl
dt

= vd − v

m
dv
dt

= kl − F

Simulation of Stick Slip

m
d2x
dt2 = k(y − x)− F

y = vot

l = y − v
dl
dt

= v0 − v

m
dv
dt

= kl − F

F = σ0z + σ1
dz
dt

+ σ2v

dz
dt

= v − pvp
g(v)

z

g(v) = lc + (ls − lc)e−v/vs

Parameters

m = 1
k = 2
µ = 0.3
lc = 0.003
ls = 2lc
vs = 0.1

vd0 = 2
k = 2

σ0 =
µmg

lc
σ1 = 2

√
mσ0

σ2 = 0.0

Simulation of Stick Slip
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Simulation of Stick Slip - Details
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Projection on l, v Plane σ2 = 0
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Projection on l, v Plane σ2 = 0.2
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Effects of k and s2

Equations of motion

dl
dt

= v0 − v

m
dv
dt

= kl − F

dz
dt

= v − pvp
g(v)

z

F = σ0z + σ1
dz
dt

+ σ2v

g(v) = lc + (ls − lc)e−v/vs

z has little influence except when
v is very small

dl
dt

= v0 − v

m
dv
dt

= kl − σ0lc sgn(v)− σ2v

Equilibrium

l =
σ0lc sgn(v0) + σ2v0

k
v = v0

Characeristic polynomial

s2 +
σ2

m
s +

k
m

Relative damping ζ = σ2
2
√

mk

Effects of Parameter Variations

Equilibrium

l =
σ0lc sgn(v0) + σ2v0

k
=

Fc + σ2v0

k
v = v0

Relative damping ζ =
σ2

2
√

mk
σ2 shifts equilibrium horisontally, influences damping and existence of

limit cycle
k shifts equilibrium horisontally, influences damping and existence of

limit cycle
v0 shifts equilibrium horisontally and vertically, influences and existence

of limit cycle

Effect of Viscous Friction σ2
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Effect of Pulling Velocity vd
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Effect of Spring Coefficient k

0 5 10

0

1

2

3

4

5

6

0 1 2 3 4

0

1

2

3

4

5

6

−0.5 0 0.5 1 1.5 2

0

1

2

3

4

−0.5 0 0.5 1 1.5 2

0

1

2

3

4

k = 0.5 k = 2

k = 5 k = 8

ll

ll

vv

vv

Stability of Sliding Equilibrium
Equations of Motion

dl
dt

= v0 − v

m
dv
dt

= kl − F

dz
dt

= v − pvp
g(v)

z

F = σ0z + σ1
dz
dt

+ σ2v

g(v) = lc + (ls − lc)e−v/vs

Equilibrium

v = v0

z = g(v0) sgn v0

l = (σ0z0 + σ2v0)/k

Dynamics matrix

A =





0 −1 0
k
m −σ1(1−zf ′)+σ2

m −σ0−σ1 f
m

0 1− zf ′ −f





Characteristic polynomial

s3 + a1s2 + a2s + a3

f(v) =
pvp

g(v)

a1 =
σ1(1− zf ′) + σ2

m
+ f

a2 =
σ0(1− zf ′) + σ2f + k

m

a3 =
kf
m
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Specifics

For large v we have g = lc, f =
pv0p
lc

and f ′ =
sgn(v0)

Lc
then

a1 = σ2 + f

a2 = k +
σ2pvp

lc

a3 =
kpv0p

lc
a1a2 − a3 = σ 2

2 f + σ2f2 + σ2k

The sliding equilibrium is thus stable when the velocity is large. Stick-slip
oscillation requires intial conditions sufficiently far from the equilibrium.

Specifics ...

Instability for small v for the simulation example

0.1 0.2 0.3 0.4 0.6
−1.5

−1

−0.5

a 1
a 2
−

a 3
,F

′ ss

v

0

0 0.5

The red curve shows the derivative of the static fric-
tion function F ′ss(v) for v > 0

Fss(v) = σ0z + σ2v = σ0

(

lc + (ls − lc)e−v/vs
)

+ σ2v

F ′ss(v) = −σ0
ls − lc

vs
e−v/vs + σ2

Stable for v > 0.501

Parameters

lc = 0.001
ls = 0.002
µ = 0.3
vs = 0.1
g = 10
m = 1
k = 1

σ0 =
µmg

lc
σ1 = 2

√
ms0

σ2 = 0.2

Analysis
Assuming that z is much faster than the other states the model can be
approximated by the singularly perturbed system

dl
dt

= v0 − v

m
dv
dt

= kl − Fss(v)

Fss = σ0g(v) sgn v + σ2v

The linearization of this system has the dynamics matrix

A =





0 1
k
m

−F ′ss

m





This system is stable if

F ′ss(v) =
σ0g′(v) sgn(v) + σ2

m
> 0

Summary

The stick slip behavior of the LuGre model is complex.
◮ Useful to approximate by neglecting z gives a crude picture which

allows projection on the l, v plane.
◮ The zone around the strip v = 0 and 0 ≤< l ≤ Fs/k acts like an

attractor.
◮ Solutions can pass through the strip because the problem is really

three dimensional.
◮ There is an equilibrium where the velocity and the length are

constant. The stability of this equilbrium depends on the parameters.
◮ The limit cycle will typically disappear when v or k are large.

Friction Models and Friction Compensation

1. Introduction
2. Friction Models
3. The LuGre Model
4. Effects of Friction on Control Systems
5. Friction Compensation

Exploiting passivity
Servo systems
The Furuta Pendulum

6. Summary

Friction Compensation

Methods to reduce effects of friction
◮ Dither
◮ Acceleration feedback
◮ Model based friction compensation
◮ Adaptive friction compensation

Requirements on system and computations
◮ System structure
◮ Velocity measurements and estimates
◮ Computational requirements

Control design methods
◮ Passivity based designs

Friction Compensation Friction Compensation

u = ufb − F̂

F̂ = σ0ẑ + σ1
dẑ
dt

+ σ2v

dẑ
dt

= v − σ0
pvp

g(v)
ẑ

g(v) = Fc + (Fs − Fc)e−v2/v2
s

◮ More general observers
◮ Velocity measurements
◮ Little dynamics from u to F

System Structure

G(s)

F Fric.
Model

v

Much theory available
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Model Based Friction Compensation
◮ Laboratory experiments

◮ Servo systems
◮ Inverted pendulums

◮ Industrial experiments
◮ Hydraulic robots
◮ Electric robots
◮ Positioning systems

Performance Degradation due to Friction
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With Friction Compensation

0 20 40 60 80 100

−5⋅10−3

5⋅10−3

0 20 40 60 80 100
−0.05

0

0.05

0 20 40 60 80 100

−0.05

0.05

y

F − F̂

ulin

Laboratory Experiment Effect of Friction Compensation

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

Tracking reference

[r
ad

]

Time [sec]

0 10 20 30 40 50 60 70 80 90 100

-0.1

-0.05

0

0.05

0.1

Tracking error

[r
ad

]

Time [sec]

without friction compensation with fixed friction compensation

Parameter Sensitivity

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Tracking error

[r
ad

]

Time [sec]

with nominal friction with constant brake perturbation

Adaptive Friction Compensation

0 10 20 30 40 50 60 70 80 90 100

-0.1

-0.05

0

0.05

0.1

Tracking error

[r
ad

]

Time [sec]

with nominal friction with constant brake perturbation

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3
Parameter adaptation: 1/theta

Time [sec]

8



Experiments with the Furuta Pendulum

Arm angle φ , pendulum angle θ .

Effect of Friction
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Comparison with Simulations
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Experiment with Friction Compensation
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Friction Compensation Based on Well Tuned LuGre Model

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4
x 10

−3

Time (s)

A
ng

le
 (

ra
d)

Theta with LuGre compensation
a)

0 2 4 6 8 10 12 14 16 18 20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

A
ng

le
 (

ra
d)

Phi with LuGre compensation

b)
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Servo systems
The Furuta Pendulum

6. Summary

Summary

◮ A classical field
◮ Great interest in many disciplines

New measurement techniques and new sensors

◮ Essential in all motion control systems
◮ Particularly micro-mechanical systems
◮ Static and dynamic models

Dahl, Bliman-Sorine, LuGre
◮ Friction compensation

Model based
Accelerometer feedback
The need for adaptation

◮ The need for adaptation and better models
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