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Lecture on May 5: Mathias Strandberg from Modelon will discuss
automotive modeling using Modelica and Modelon Impact.
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Introduction

▶ A large community.

▶ Self-driving cars accelerate development and extend needs and
scope for automotive modeling.

▶ Large user groups for Modelica.

▶ Vehicular systems lend themselves well to component-based
DAE modeling.

▶ This lecture aims to provide an overview of some model
components common for automotive modeling.

▶ Many opportunities for course projects in this area.



Model Components for a Vehicle

A vehicle model typically consists of more or less complex models
of the following components:

▶ Powertrain and braking systems,

▶ Wheels and tire dynamics,

▶ Steering and suspension dynamics,

▶ Chassis dynamics.

In addition: Driver and environment modeling important for
automotive simulations.



Models for Different Purposes

▶ What is the purpose of the vehicle model?
▶ Wide range of applications for vehicle models, e.g.,

▶ simulation (vehicle design, validation, control design),
▶ dynamic optimization,
▶ code generation for embedded real-time execution.

▶ What level of fidelity is required to capture essential
dynamics?

▶ Models for dynamic optimization imply certain considerations
(e.g., differentiation).



Vehicle Coordinate Frames

An illustration of involved vehicle coordinate frames and variables
from [Kiencke & Nielsen, 2005]:
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Propulsion System for a Vehicle

▶ Drivetrain includes all components required to deliver power
to the driving wheels of the vehicle from the engine/motor.

▶ Powertrain includes drivetrain and engine/motor.
▶ Internal combustion engines (diesel, gasoline, ethanol, etc.).
▶ Battery-electric vehicles with electric motor.
▶ Hybrid vehicles (internal combustion engine and electric

motor).
▶ Fuel-cell electric vehicles.

▶ Dedicated drive cycles (driving missions) for system and
control design.



Vehicle Powertrain Model

▶ Engine/motor, clutch, transmission (gear box), shafts, and
wheels.

▶ Often non-linear flexibilities in clutch and shafts.

▶ Illustration of a powertrain model from [Kiencke & Nielsen,
2005] for a rear-wheel driven vehicle:



Powertrain Model
▶ Rotational angles and torques involved in a powertrain model

from [Kiencke & Nielsen, 2005]:

▶ FL is the resulting traction force on the wheel moving the
vehicle forward.



Aerodynamic and Rolling Resistance

▶ A low-complexity model for aerodynamic resistance, or air
drag (v speed, ρair air density) [Kiencke & Nielsen, 2005]:

Fwind =
1

2
cairALρairv

2

with cair drag coefficient and AL vehicle cross-section area.

▶ Relation based on fluid dynamics (Lord Rayleigh).

▶ Tabulated values for different vehicles. Average values of drag
area cairAL for a passenger car are 0.5–2.5 m2.

▶ Complex models for aerodynamic resistance (cf. racing cars).

▶ A low-complexity model for rolling resistance (m mass):

FR = m(c1 + c2v)

where coefficients c1 and c2 depend on, e.g., tire properties.



Propulsion Forces

▶ Gravity force contributes with −mg sin(χroad) for a road with
angle χroad.

▶ Summing the forces involved in the vehicle propulsion in the
longitudinal direction gives using Newton’s second law of
motion:

mv̇ = FL︸︷︷︸
Traction force

−Fwind − FR −mg sin(χroad)︸ ︷︷ ︸
Opposing forces

where FL is the traction force from the wheels delivered by
the powertrain system.
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Braking Systems for a Vehicle

▶ Brakes for reducing speed of the vehicle, often friction-based
with mechanical device.
▶ Disc brake or drum brake.

▶ Regenerative braking by electric motors (energy recovery by
converting the kinetic energy).

▶ Many control systems related to braking:
▶ Anti-lock braking system (ABS), maintain traction by avoiding

wheel lock during braking.
▶ Yaw control and Electronic Stability Control (ESC),

individual-wheel braking.
▶ Autonomous emergency braking systems.



Wheel Dynamics

▶ Forces and torques involved on a wheel, illustration from
Ph.D. Thesis [Svendenius, 2007] based on SAE convention.



Wheel Slips

▶ Longitudinal slip ratio κ and lateral slip angle α for the wheel.

▶ Let Rw be the wheel radius, ωi the angular velocity, and vx ,i ,
vy ,i the longitudinal and lateral velocities for wheel i .

▶ Longitudinal slip ratio [Pacejka, 2006]:

κi =
Rwωi − vx ,i

vx ,i
, i ∈ {f , r} or {1, 2, 3, 4}

▶ Lateral slip angle with relaxation length [Pacejka, 2006]:

α̇i
σ

vx ,i
+ αi = − arctan

(
vy ,i
vx ,i

)
, i ∈ {f , r} or {1, 2, 3, 4}

where σ is the relaxation length.

▶ Body slip β = arctan
(
vy
vx

)
, where vx , vy are longitudinal and

lateral velocities at vehicle center of mass.
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Tire–Road Interaction Models

▶ Tire important part of the wheel.

▶ Friction between tire and road surface allows acceleration and
deceleration of the vehicle as well as cornering (longitudinal
Fx and lateral forces Fy ).

▶ A vast plethora of models exist for modeling such dynamics.

▶ Dynamics depends on tire, road surface, temperature, normal
load, etc. Thus, tire–road interaction models.



Longitudinal Tire Forces

Longitudinal tire forces as function of slip for different road
surfaces, from [Kiencke & Nielsen, 2005].



Linear Tire Model

▶ A first, linear model of the longitudinal Fx and lateral Fy tire
forces:

Fx = Cκκ

Fy = Cαα

▶ Cκ and Cα are the tire longitudinal and cornering stiffness,
respectively.



Tire–Road Interaction Models
▶ Pacejka’s Magic Formula [Pacejka, 2006] slip-based model:

Fx0 = µxFz sin(Cx arctan(Bxκ− Ex(Bxκ− arctan(Bxκ))))

Fy0 = µyFz sin(Cy arctan(Byα− Ey (Byα− arctan(Byα))))

▶ Empirical model, calibrated based on experimental data.

▶ Hans B. Pacejka (TU Delft), book “Tyre and Vehicle
Dynamics”, co-founder of journal Vehicle System Dynamics.



Tire–Road Interaction Models: Combined Slip

▶ Friction ellipse for modeling of lateral forces (often with Fx as
input):

Fy = Fy0

√
1−

(
Fx
µxFz

)2

▶ Weighting functions for combined longitudinal and lateral tire
forces [Pacejka, 2006]:

Bxα = Bx1 cos(arctan(Bx2κ)), Gxα = cos(Cxα arctan(Bxαα)),

Fx = Fx0Gxα

▶ Corresponding weighting functions and parameters for the
lateral force.



Friction Ellipse vs. Weighting Functions

▶ Comparison between Friction Ellipse and Weighting Functions
from [Berntorp, 2013] for combined tire forces (α = 14 deg.).

▶ Differences most prominent for low lateral tire forces.



Empirical Pacejka Parameters and Weighting Functions

▶ Resulting tire-force surface from [Berntorp, Olofsson et al.,
2013], with empirical parameters from [Pacejka, 2006].



Tire–Road Interaction Model Calibration

▶ Tire-force surfaces from [Berntorp, Olofsson et al., 2013], with
empirical parameters from [Pacejka, 2006] for friction ellipse
(FE) and weighting functions (WF).



Force-Slip Diagrams

▶ Force-slip diagrams [Berntorp, Olofsson, et al, 2014] illustrate
the normalized resultant tire-force Fres, as function of κ and
α, where

Fres =
√

F 2
x + F 2

y

▶ The trace from a vehicle maneuver is drawn on this surface.

▶ Gives valuable information about utilization of the tire–road
friction potential.

▶ Examples for dry asphalt (left) and smooth ice (right) for a
specific vehicle maneuver [Olofsson, Berntorp et al., 2013]:



Other Tire–Road Interaction Models

▶ The tire parameters can be scaled/modified to represent
different road surfaces [Braghin et al., 2006].

▶ Models commonly used for simulation, not always sufficient
for optimization.

▶ Friction is a complex phenomenon (recall previous lecture).

▶ Other common models are, e.g., Brush models, Dugoff / HSRI
model, and Burckhardt model [Kiencke & Nielsen, 2005].

▶ Also transient friction models like LuGre and SWIFT have
been proposed and adapted to tire modeling [Pacejka, 2006;
Kiencke & Nielsen, 2005; Svendenius, 2007].
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Steering Dynamics

▶ The steering ratio: ratio between turning the steering wheel
and the actual rotation of the wheels.
▶ Usually in the range of 10–20:1 for passenger cars.

▶ The camber angle: angle between vertical axis of wheel and
vertical axis of vehicle, with perspective from the front.
▶ Affects the handling dynamics of the car in interaction with

the suspension system, often utilized in racing.



Steering Kinematics—Ackermann Turning

▶ Left and right wheels on the axle moving with different curve
radii.

▶ Steering mechanism known as Ackermann steering geometry
(horse carriages, Georg Lankensperger, Rudolph Ackermann,
1817-1818).

▶ Quasi-static considerations for determining steering
kinematics. Implications on vehicle dynamics.

Figure source: Wikimedia Commons, CC BY-SA 3.0



Suspension Dynamics

▶ Often used concepts:
▶ Unsprung mass: Wheels and the suspension system.
▶ Sprung mass: Carried by the suspension system (vehicle body).

▶ A first, linear model for a four-wheeled vehicle would be
rotational inertia-spring-damper systems for roll and pitch
directions.

▶ Moment τϕ produced by the suspension system in the roll
direction modeled by

τϕ = (Kϕ,f + Kϕ,r )ϕ+ (Dϕ,f + Dϕ,r )ϕ̇

▶ Moment τθ in the pitch direction modeled according to

τθ = Kθθ + Dθθ̇

where K and D are stiffness and damping parameters.



Dynamic Equations for Load Transfer

▶ A suspension system implies load transfer when
accelerating/decelerating (i.e., time-varying normal forces).

▶ Dynamic equations for longitudinal load transfer:

(Fz,1 + Fz,2)lf − (Fz,3 + Fz,4)lr = Kθθ + Dθθ̇,

4∑
i=1

Fz,i = mg

where Fz,i , i ∈ {1, 2, 3, 4}, are the normal forces on each
wheel and lf , lr are front and rear distances from the wheel
axle to center of mass.

▶ Lateral load transfer:

−w(Fz,1 − Fz,2) = Kϕ,f ϕ+ Dϕ,f ϕ̇,

−w(Fz,3 − Fz,4) = Kϕ,rϕ+ Dϕ,r ϕ̇

where w is half of the vehicle track width.



Quarter Model for Suspension Dynamics

▶ The quarter model is common for modeling and designing
suspension systems (including control for active damping).

▶ One version from [Kiencke & Nielsen, 2005] illustrated in the
figure.
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Characteristics of Chassis Dynamics

▶ Model equations for the chassis dynamics derived from
analytical mechanics.

▶ Newton-Euler or Euler-Lagrange approach (recall previous
lectures) to establish a differential-algebraic equation (DAE)
system.

▶ Principles are straightforward, but often a time-consuming
and slightly tedious process to derive the equations.
▶ Tools for symbolic manipulation of variables useful.

▶ Extensive libraries with models of varying fidelity exist.



Chassis Dynamic Models

▶ Varying complexity of chassis
models possible.

▶ Examples for a four-wheel
vehicle include the simplified
single-track model (upper
figure) and the double-track
model (lower figure).

▶ Double-track model:
▶ Roll and pitch dynamics and

associated load transfer.
▶ Control inputs: Steering angle

δ and wheel torques T1, T2,
T3, and T4.



Single-Track Vehicle Model

▶ Single-track model equations [Berntorp, Olofsson et al., 2014]:

v̇x − vy ψ̇ =
1

m
(Fx ,f cos(δ) + Fx ,r − Fy ,f sin(δ)) =

FX
m
,

v̇y + vx ψ̇ =
1

m
(Fy ,f cos(δ) + Fy ,r + Fx ,f sin(δ)) =

FY
m
,

Izz ψ̈ = lf Fy ,f cos(δ)− lrFy ,r + lf Fx ,f sin(δ) = MZ ,

▶ FX , FY , and MZ are the global forces, δ is the steering angle,
and Izz is the inertia about the z-axis.

▶ Longitudinal tire forces Fx (or wheel torques) and steering
angle δ as inputs.



Double-Track Model—Translational Motion

▶ Equations for a double-track vehicle model more extensive,
see [Berntorp, 2013] for a full derivation.

▶ The model equations for translation motion along x and y are:

v̇x − vy ψ̇ = h
(
sin (θ) cos (ϕ)(ψ̇2 + ϕ̇2 + θ̇2)− sin (ϕ)ψ̈ − 2 cos (ϕ)ϕ̇ψ̇

− cos (θ) cos (ϕ)θ̈ + 2 cos (θ) sin (ϕ)θ̇ϕ̇

+ sin (θ) sin (ϕ)ϕ̈
)
+

FX
m

v̇y + vx ψ̇ = h
(
− sin (θ) cos (ϕ)ψ̈ − sin (ϕ)ψ̇2 − 2 cos (θ) cos (ϕ)θ̇ψ̇

+ sin (θ) sin (ϕ)ϕ̇ψ̇ − sin (ϕ)ϕ̇2 + cos (ϕ)ϕ̈
)
+

FY
m
,



Double-Track Model—Global Forces

▶ The global forces for the translational motion are:

FX = Fx ,1 cos (δ)− Fy ,1 sin (δ) + Fx ,2 cos (δ)− Fy ,2 sin (δ)

+ Fx ,3 + Fx ,4,

FY = Fx ,1 sin (δ) + Fy ,1 cos (δ) + Fx ,2 sin (δ) + Fy ,2 cos (δ)

+ Fy ,3 + Fy ,4



Double-Track Model—Yaw Dynamics

▶ Let Ixx , Iyy , and Izz be the inertia for the respective direction.

▶ The dynamic equation for ψ (yaw motion) is given by:

ψ̈(Ixx sin (θ)
2 + cos (θ)2(Iyy sin (ϕ)

2 + Izz cos (ϕ)
2))

= MZ − h
(
FX sin (ϕ) + FY sin (θ) cos (ϕ)

)
,

where the global moment is:

MZ = lf

(
Fx ,1 sin (δ) + Fx ,2 sin (δ) + Fy ,1 cos (δ) + Fy ,2 cos (δ)

)
+ wf

(
− Fx ,1 cos (δ) + Fx ,2 cos (δ) + Fy ,1 sin (δ)− Fy ,2 sin (δ)

)
− lr (Fy ,3 + Fy ,4)− wr (Fx ,3 + Fx ,4).



Double-Track Model—Pitch Dynamics

▶ The dynamic equation for θ (pitch motion) is given by:

θ̈(Iyy cos (ϕ)
2 + Izz sin (ϕ)

2) = −Kθθ − Dθθ̇

+ h
(
mg sin (θ) cos (ϕ)− FX cos (θ) cos (ϕ)

)
+ ψ̇

(
ψ̇ sin (θ) cos (θ)

(
∆Ixy

+ cos (ϕ)2∆Iyz
)
− ϕ̇(cos (θ)2Ixx + sin (ϕ)2 sin (θ)2Iyy

+ sin (θ)2 cos (ϕ)2Izz)− θ̇
(
sin (θ) sin (ϕ) cos (ϕ)∆Iyz

))
where ∆Ixy = Ixx − Iyy and ∆Iyz = Iyy − Izz .



Double-Track Model—Roll Dynamics

▶ The dynamic equation for ϕ (roll motion) is given by:

ϕ̈(Ixx cos (θ)
2 + Iyy sin (θ)

2 sin (ϕ)2 + Izz sin (θ)
2 cos (ϕ)2)

= −Kϕϕ− Dϕϕ̇+ h(FY cos (ϕ) cos (θ) +mg sin (ϕ))

+ ψ̇∆Iyz
(
ψ̇ sin (ϕ) cos (ϕ) cos (θ) + ϕ̇ sin (θ) sin (ϕ) cos (ϕ)

)
+ ψ̇θ̇(cos (ϕ)2Iyy + sin (ϕ)2Izz).



Tractor-Semitrailer Combinations (1/2)

▶ Corresponding models can also be derived for vehicles with
additional degrees-of-freedom.

▶ Example in the figure: 9-DoF model from [Gäfvert &
Lindgärde, 2001] for a tractor-semitrailer truck.

▶ Extensive model equations, beneficial with computer
manipulation.



Tractor-Semitrailer Combinations (2/2)

▶ Principles for modeling are the same, though with additional
involved coordinate frames.

▶ Illustration of tractor-semitrailer model with free-body
diagram from [Gäfvert & Lindgärde, 2001]:
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Experiments for Model Calibration

▶ Powertrain models identified, e.g., based on experiments on
roads with different slopes, flexible modes included.
▶ Measuring, e.g., engine/motor speed and torque, wheel and

transmission speed for grey-box system identification.

▶ Dedicated test rigs for tire-force model calibration.

▶ Particular maneuvers for excitation of vehicle dynamics: e.g.,
double lane-change (ISO 3888-2:2011 test), fishhook, slalom
maneuvers.

▶ Example of a double lane-change maneuver from [Anistratov,
Olofsson et al., 2021]:



Measurement Setups for Tires and Vehicle Dynamics

▶ (Left) Mobile test rig for tire–road force measurements from
[Svendenius, 2007], on the figure in Arjeplog for winter tests.

▶ (Right) Car equipped with sensor for vehicle-dynamics
experiments (Linköping University).
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Summary

▶ Automotive modeling covers many different model areas.

▶ Differential-algebraic equation systems natural for description
of the model dynamics.

▶ Modelica offers a language for such model descriptions.

▶ Associated tools enable model simulations and dynamic
optimization of DAEs.

▶ Mathias Strandberg from Modelon will describe how
automotive modeling and simulation can be done using
Modelica in the tool Modelon Impact during the lecture on
May 5.
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