
Physical modeling in Julia
For those about to control

Acknowledgement

This presentation contains an assortment of content contributed by multiple people

● Chris Rackauckas
● Yingbo Ma
● Probably more, thank you!

Outline

● X Differential equations
● Equation-based modeling

○ Symbolics
○ ModelingToolkit (MTK)
○ Tools on top of MTK

● MTK Standard library
● Current status
● Project ideas

Differential equations code demo

Modeling controlled systems using DifferentialEquations.jl

● Incorporating input data
● State-feedback controller with ZoH

Equation-based modeling

● Symbolics
● ModelingToolkit (MTK)
● Tools on top of MTK

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Symbolics.jl

MTK

DiffEq

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Symbolics is a Type-Based Computer Algebra System (CAS)

The algebra and symbolic simplification rules are type-dependent

Two Worlds of Rewrite Systems Working Together

Rule-Based Rewriter: SymbolicUtils.jl E-Graph Based Rewriter: MetaTheory.jl

Pros: Fast, automatically parallelized, and uses standard rules
Cons: Simplification result is dependent on rule application order!

Pros: Deterministic result based on a cost function
Cons: Requires a separate rule set

High Performance Codegen With Symbolics

Linear indexing
of the in-place
operations on a
sparse matrix

Reduction of
computed
operations
via simplify

Automatically
spawns threads
based on the number
of non-zeroes in the
sparse Jacobian and
the number of CPU
cores

Symbolics code demo

What is ModelingToolkit?

A symbolic language and compilers for models.

1. MTK is the symbolic side of SciML
 Symbolic modeling for all numerical simulation

2. MTK is a symbolic-numeric optimizer
 Automatically optimize code for ODE solvers

3. MTK is an acausal modeling system
 Like Modelica, SimScape, etc.

4. MTK is a DSL building tool
 Catalyst.jl, PDE interfaces, Optimal control etc.

What sets MTK apart from alternatives?

• Acausal, equation based
• Open source
• Julia all the way down
• Exposes symbolic language to the user
• Very wide scope

• ODE, PDE, … all kinds of DE
• Optimization
• Deep learning
• Anything that benefits from symbolic modeling

• Differentiable

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit.jl – The
Modeling Frontend to a
Symbolic Ecosystem

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Symbolics.jl

MTK

DiffEq

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit.jl – The
Modeling Frontend to a
Symbolic Ecosystem

Specified

Solved for

Dynamics

Specify params

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit is
“Actually” About Stable

Transformations of
Models

What is a compiler?

• Transforms code to other code
• C to assembly
• Julia to LLVM, LLVM to assembly
• Complicated model to simple model

• A compiler has one or many compiler passes
• Dead-code elimination
• Expression rewriting
• Symbolic simplification X+0 -> x

• MTK model compiler is implemented in Julia
• Alias elimination, index reduction, tearing, order lowering
• You can write an MTK compiler pass

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

What Kinds of
Transformations Do You

Get?

• Analytically calculate Jacobians,
Hessians, etc.

• Automatically determine sparsity
patterns

• Automatically parallelize the
generated code

• Automatically simplify the model
and eliminate redundant variables

• Automatically transform equations
to require positivity

• Etc…

Removes One
Equation!

structural_simplify:
The typical Modelica
Transforms + more

What Kinds of Transformations Do You Get? DAE Index Reduction

Let me fix that for you…

structural_simplify:
The typical Modelica
transforms

What Kinds of Transformations Do You Get? DAE Index Reduction

Not solvable by standard
numerical solvers!

Differentiate the last equation
twice, do a few substitutions…

Easy to solve!

Composable (Acausal) Modeling via Subsystems

structural_simplify:
Contains main model transforms

Build a system of subsystems!

Describe how the subsystems relate

Compose vs. extend

compose
Place an instance of a sub-system
into an outer system

extend
Copy the contents of sub-system
into inheriting system

Compose vs. extend

compose
function Inertia(;name, J= 1.0, phi_start= 0.0, w_start= 0.0, a_start= 0.0)
 @named flange_a = Flange()
 @named flange_b = Flange()
 @parameters J=J
 sts = @variables begin
 phi(t)=phi_start
 w(t)=w_start
 a(t)=a_start
 end
 eqs = [
 phi ~ flange_a.phi
 phi ~ flange_b.phi
 D(phi) ~ w
 D(w) ~ a
 J *a ~ flange_a.tau + flange_b.tau
]
 return compose(ODESystem (eqs, t, sts, [J]; name=name), flange_a, flange_b)
end
julia> @named J = Inertia(J=1)
Model J with 5 equations
States (7):
 phi(t) [defaults to 0.0]
 w(t) [defaults to 0.0]
 a(t) [defaults to 0.0]
 flange_a ₊phi(t) [defaults to 0.0]
 flange_a ₊tau(t) [defaults to 0.0]
 flange_b ₊phi(t) [defaults to 0.0]
 flange_b ₊tau(t) [defaults to 0.0]
Parameters (1):
 J [defaults to 1]

extend
function Resistor(;name, R=1.0)
 @named oneport = OnePort()
 @unpack v, i = oneport
 pars = @parameters R=R
 eqs = [
 v ~ i * R
]
 extend(ODESystem(eqs, t, [], pars; name=name), oneport)
End

julia> @named R = Resistor(R=1)
Model R with 4 equations
States (6):
 v(t) [defaults to 0.0]
 i(t) [defaults to 0.0]
 p₊v(t) [defaults to 1.0]
 p₊i(t) [defaults to 1.0]
 n₊v(t) [defaults to 1.0]
 n₊i(t) [defaults to 1.0]
Parameters (1):
 R [defaults to 1]

MTK code demo

What is ModelingToolkit?

A symbolic language and compilers for models.

1. MTK is the symbolic side of SciML
 Symbolic modeling for all numerical simulation

2. MTK is a symbolic-numeric optimizer
 Automatically optimize code for ODE solvers

3. MTK is an acausal modeling system
 Think like Modelica, SimScape, etc.

4. MTK is a DSL building tool
 Catalyst.jl, PDE interfaces, optimal control

ModelingToolkit has System Types Matching Each SciML Numerical Domain

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface

NonlinearSolve.jl: Unified Nonlinear Solver
Interface

DifferentialEquations.jl: Unified Interface for all
Differential Equations

GalacticOptim.jl: Unified Optimization Interface

Quadrature.jl: Unified Quadrature Interface

Unified Partial Differential Equation Interface

Models Can Come From DSLs

• Pumas.jl
• Catalyst.jl
• OrbitalTrajectories.jl
• AstrodynamicalModels.jl
• BlockSystems.jl
• Conductor.jl
• PowerSystemsDynamics.jl A growing ecosystem of DSLs all feed into

ModelingToolkit systems.

Models Can Come From External File Formats

Systems Biology in ModelingToolkit, JuliaCon 2021

modular differential equation APIs for accelerated algorithm development and benchmarking." Advances in
Engineering Software 132 (2019): 1-6.

SciML’s Modeling Ecosystem:
ModelingToolkit’s Numerical Counterpart

SciML’s Common Interface:

• Consistent interface for all numerics

• Symbolic modeling for all forms

• Automated inverse problems and adjoints

• Composes across the whole package
ecosystem

• Generic and composable programming

• Uses and embraces the work of other
developers

Machine Learning Surrogates as Approximate Transformations

Describe how the subsystems relate

If you build a machine learning method that outputs
differential-algebraic equations, then it qualifies as an
“approximate” stable transformation

● Take in a differential equation and the outputs to surrogatize over
● Create a new differential equation system that is approximately the

same input/output mapping (dimensionality reduction)
● Represent that system as an MTK model

Because it’s approximate, it needs user-intervention.

We developed the continuous-time echo state network as a surrogate
method which is robust to stiffness and has these properties.

PDE

ModelingToolkit’s General PDE Specifications

ModelingToolkit’s General PDE Specifications

Solving PDEs is generally about
transforming mathematical equations
into other forms.

See “Solving Partial Differential
Equations in Julia”, JuliaCon 2018

ModelingToolkit’s General PDE Solver: Finite Difference Method

ModelingToolkit’s General PDE Solver: Physics-Informed Neural Networks

Easy and Customizable PINN PDE Solving with NeuralPDE.jl, JuliaCon
2021

ModelingToolkit’s General PDE Solver: Physics-Informed Neural Networks

Coming soon:

Finite Volume methods
Spectral methods
Finite element methods
…

All PDE solving with unified interface

Looking to collaborate with all Julia PDE
developers to make this a reality.

ModelingToolkitStandardLibrary

Modeled after Modelica stdlib
• Blocks

• PID
• StateSpace
• FirstOrder
• …

• Mechanical
• Rotational

• Electrical
• Magnetic
• Thermal

http://mtkstdlib.sciml.ai/dev/

MTK: Work in progress-Current status

Solid
• Standard compiler

transforms
• Composable

modeling in
continuous time

Needs more work
• Discrete time
• General events
• Documentation
• Optimization problems

• Optimal control
• Helpful error messages
• Array variables
• Input-output
• Linearization
• Trimming
• Inverting models
• GUI

Basic functionality
• Symbolic events
• Component library
• Units

Project ideas

● Model validity checker
○ Add metadata to model (https://github.com/SciML/ModelingToolkit.jl/pull/1560)
○ Post hoc solution validation?
○ Online solution validation as callback?

● Composable code callbacks
○ Symbolic callbacks supported
○ How about non-symbolic callbacks?

● Bayesian estimation of model parameters
○ Prior-metadata for parameters
○ Code-gen for likelihood evaluation

https://github.com/SciML/ModelingToolkit.jl/pull/1560

