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Who cares?

...classical theory of passive network synthesis—a beautiful subject that
reached its zenith around 1960, only to decline steadily thereafter as an active
research interest...

—Malcolm Smith



Who cares?

...classical theory of passive network synthesis—a beautiful subject that
reached its zenith around 1960, only to decline steadily thereafter as an active
research interest...

...turned into the major scientific interest of Kalman’s
last decade...

—Malcolm Smith



Who cares?




Who cares?

e A very useful class of models:

e Can describe many phenomena

e Many analogues with other physical domains

o Many useful control architectures (PID, phase lead/lag)
e Inspires useful theory:

e Lyapunov functions
e Energy dissipation and passivity



Today’s Lecture

Modelling electrical networks

Analogues

Network synthesis and state-space models

Unsolved problems



Modelling circuits

A picture, with a clear mathematical meaning:
e edges < differential equations, driving points
e topology <= algebraic equations
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The passive elements




The passive elements
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The passive elements
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Driving points

Electrical
circuit

Pair of terminals with external through current and across voltage



Algebraic equations

[ My My | M3 M, |

lint
lext
Vext



Circuit behavior
Element laws, driving points, conservation laws:
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Circuit behavior
Element laws, driving points, conservation laws:

iint

M, M, ‘M3 My Vint | _
diagPy (4) diagQx(4) | 0 0 fext
Vext

Full behavior

B ={(i,v) : (i,v) € Hoc X Hoc satisfy (1)}



Circuit behavior
Element laws, driving points, conservation laws:

iint
{ M, M, ‘M3 M4} Vint | _
diagPy (4) diagQx(4) | 0 0 fext

Vext

External behavior

B {(ie,ve) : <H , [:D € Lioe X L. satisfy (1)}



Analogues

Mechanical Electrical
F F i i
£, r Ve SR gt
M -
Vg U1 . .
spring inductor
F 1 i i
Vg v
Vo Vi = 0 .
mass capacitor
F F i i
gy R
v V1
damper resistor




Analogues

rack pinions

/

terminal 2 gear flywheel terminal 1

Suppose the flywheel of mass m rotates by « radians per meter of relative
displacement between the terminals. Then:

F = (ma?) (Vg —¥1)



Analogues

Mechanical Electrical
Faryrimed y(s) =& WY(s) =+

spring

di

1 .
% = 7(v2 —v1) inductor

vz V1
F = b% inerter

i—voz—{ HY(S) =Cs

i=C 7‘1(’”2;”1) capacitor

v
F =c¢(vy —v1)  damper

S bt Y6 = 4

i=p(v2—v1)  resistor




Network synthesis and state-space models

iint
[ M, M, | M5 M, ] Vint
diag P; (%) diag Q; (%) ‘ 0 0

iext
Vext

Behavioral state-space model:

d
By = {(x,u,y) : Ex:quLBu,y: Cx+Du}



Transformer Synthesis
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Transformer Synthesis

|

0 0
I N

NT
0

—1I

0

|

la

ip

Vb



Transformer and Gyrator Synthesis
Can synthesise
i
[R|-1] {v} =0

forany R= —R".



Transformer and Gyrator Synthesis
Can synthesise
i
[R|-1] {v} =0
forany R= —R".

Factor:



Transformer and Gyrator Synthesis

Synthesise with transformers: [ 0

Synthesise with gyrators: { (I)
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Transformer and Gyrator Synthesis

V trafos




Transformer and Gyrator Synthesis

Synthesise with transformers: [ (I) N
. . 0 —I
Synthesise with gyrators: { I 0




Synthesise with transformers:

Synthesise with gyrators: { (I)

Transformer and Gyrator Synthesis
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Transformer and Gyrator Synthesis

Synthesise with transformers:

0
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Transformer and Gyrator Synthesis

Synthesise with transformers:

Synthesise with gyrators: { (I)
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Transformer and Gyrator Synthesis

v:—NT[

Synthesise with transformers:

Synthesise with gyrators: { (I)
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Resistor, Transformer, and Gyrator Synthesis...

Can synthesise
i
[R|—1] {v} =0

for any R such that R+ R” = 0.



Resistor, Transformer, and Gyrator Synthesis...

Can synthesise
i
[R|—1] {v} =0

for any R such that R+ R” = 0.
Factor:
(R+R")=5"S

N =



Resistor, Transformer, and Gyrator Synthesis...

S

Synth with trans and gyr: Y (RT —R)

[}

Synthesise with resistors: [ —I | | |——




RLTG synthesis
Synthesise with RTG:
iint
[—A ~I|-B 0 ] Vint
lext

Vext

Synthesise with L




RLTG synthesis
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RLTG synthesis
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RLTG synthesis
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RLTG synthesis

Can synthesise any state-space model for which

T
~A -B] [-A -B
& B[ B e



An equivalent characterisation

Every external RLCTG network behavior admits a state-space realisation with

T
A -B] [-A -B

= 0.
&l o) e



Special cases

Lossless Networks

T NA T 0 Dy
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Special cases

Lossy Networks

RT N/A Dy = 0,D55 = 0
,,,,, ,/},,,,,,,,,,,B,L,EQ,,,,,, ~A B
RLT | -J BI U Dy Di o | =0,Din =0
T T By D
“BT | —DT, Dy
,,,,, é,,,,,,,,,,,B,l,,,,B,%,,,,, _A B
RCT I “BT { Dy, Dp BAT Dl =0,Dp =0
BI | —DT, Dy Lo




Open problems

e Transformerless synthesis
e Synthesise resistive '4 ports’



Exploit structure for Optimal Control

K (s) 1 4 G (s) !/

U




Exploit structure for Optimal Control
Optimal Controller:

(
A—-2BB"T ' B .
_ e in the H, case;
AeiBe | _ B' 10
C.|D.
3l } in the H., case;
L
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Example |




Example |

Reasonable starting point for grid forming inverter design:
1. Easy to scale
2. Inherits network structure
3. Nothing to do with sparsity!



Example Il

Im

Figure 4: Illustration of the observation about the optimal control law from Remark 3. In the
scalar case, the H., norm of

CONI+K ()G () [K05) 1],




Example Il

The objective of constrained least squares is to find an z € R” that satisfies
min || Az — b||,,s.t. CZ =d, (33)
zeRn
where A € R™*", ' € RP*", b € R™ and d € RP are the problem data. Constrained least squares
encompasses a very broad class of problems including, for example, finite horizon LQR, and
includes standard least squares and minimum norm solutions to a set of linear equations as
special cases (p = 0, and A = [ and b = 0, respectively). The solution to eq. (33) can be
obtained from the Karush-Kuhn-Tucker conditions
—ATA —CT
C 0

T
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Example Il

To this end, consider the system

(35)
y=[a o)z +ws.



Example Il

eq. (35) that the closed loop system becomes

y=[a o]z +ws

Therefore by applying the step inputs 71 = bH (t) and ry = dH (t), where H (t) denotes the

unit step, we see that

lim z () = {x} .

t—o0

Wl



