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Introduction

◮ A major challenge
◮ Golgi staining 1885
◮ Cajal 1911 Mapping of the neurons using Golgi staining
◮ McCulloch and Pitts 1943
◮ Wiener 1948 Cybernetics - Control and Communication in the Animal

and the Machine
◮ Rosenblatt perceptron artificial neural networks 1957
◮ Detailed studies of animal behavior
◮ The Hodkin-Huxley Equations 1952
◮ Carver Mead 1989 neurons in silicon

A Major Challenge!

Explain some key functions such as
◮ Perception, how do we see and hear?
◮ Motor control, how to swim walk and fly?
◮ Short term memory
◮ Long term memory
◮ Emerging group behavior.

Technical and Biological Systems

◮ A recurrent theme
◮ Two driving forces: understand and imitate
◮ Cybernetics: Wiener 1948 and Ashby 1956
◮ Neural Systems: McCulloch Pitts 1943 and Rosenblatt 1957
◮ Adaptation and Learning: Early experiments 1955, theory, industrial

use 1980
◮ Artificial Intelligence:

◮ Dartmouth Conference 1956
◮ Artificial neural networks
◮ Deep learning

◮ Mind and Matter (Symbols versus Hardware)

Artificial Neural Networks

◮ The beginning: McCulloch and Pitts 1943, Hebb 1949
◮ First successes: Rosenblatt 1958 (The Perceptron), Widrow-Hoff

1961 (Adaline), the XOR problem
◮ Into the Doldrums

◮ Minsky and Papert 1969
◮ Survivors Andersson, Grossberg, Kohonen

◮ A Revival
◮ Hopfield 1982
◮ The Parallel Distributed Process Group
◮ The Snowbird Conference

◮ Cult Status
◮ Deep Learning - Image processing

Pictorial History of Neural Networks

Artificial Neural Networks
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◮ A nonlinear function of several variables with learning
◮ Sorting, classification and optimization

Kolmogorov’s Theorem 1957

Theorem: Any continuous real-valued functions f(x1, x2, ..., xn) defined for
xi in the range [0, 1] can be represented in the form

f(x1, x2, ..., xn) = Σn
j=1gi

(

Σn
i=1φ ij(xj)

)

where gj are properly chosen continuous functions of one variable, and φ ij
are continuous monotonically increasing functions.
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Golgi Staining

Golgi 1885 developed a model for
selective staining which was a key

to see the microstructure of the
nervous system. Cajal made

extensive use of Golgis technique
in a book on the histology of the

nervous system 1904

Neurobiology

◮ How many neurons are there?
◮ 104 to 105 in simple nonvertebrates
◮ 1011 in the human

◮ What do neuron look like?
◮ Cell body (soma) 5-100 µ m
◮ Dendrites 0.001 m
◮ Axons 0.001-1 m
◮ Synapse (contact point between neurons)

◮ Are neurons very different?
◮ How are neurons connected?

◮ Synapses

◮ What goes on in a neuron?

Picture of a Neuron

Another Picture of a Neuron A Family of Models

◮ Electro-chemistry of cell and membrane
◮ Electrical spike activity
◮ Simplified models for average spike rate
◮ Complexity (number of neurons)

Level Number of Neurons Describes
Molecular Part of a neuron Electro Chemistry

Ion Channel Part of a neuron Synapses
Action potential 1-10 Spike trains

Spike rate 1-100 Interaction
PET, NMR 105 − 109 Activated brain regions

Modeling a Neuron

◮ What happens at a synapse
◮ Excitation by a spike
◮ Opens ion channels (two types excitory or inhibitory)
◮ Changes in post-synaptic potential

◮ Activity from several dendrites added in the cell body
◮ A pulse is generated when the potential exceeds a threshold
◮ The pulse travels along the axon and makes contact with other

neurons at other synapses

An Ion Channel

The current is governed by Ohms law I = g(V − E) where I is the ionic
current across the nerve membrane, g is the conductance, V voltage
difference across the membrane and E the equilibrium potential given by

E =
RT
zF

log
Cout

Cin

The post-synaptic voltage is given by

C
dV
dt

= gl(El − V) + ge(Ee − V) + gi(Ei − V)

Leakage (l), exitatori (e) and inhibitory (i)
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Modeling Post-synaptic Potential

C
dV
dt

= gl(El − V) + ge(Ee − V) + gi(Ei − V)

where gl and El are conductance and equilibrium potential for the leakage
current, ge and Ee refer to excitory ion channel and gi and Ei refer to
inhibitory ion channel. Typical values are C = 12.5$ 10−12, gl = 1 nS,
(nano Siemens) El = Ei = −75mV and Ee = 0. This gives
gl/C = 12500. Using ms as the time unit and mV as the unit for voltages
the equation can be written as

12.5dV
dt

= −75− V − ge

gl
V +

gi

gl
(75− V)

The Post-synaptic Potential

12.5dV
dt

= −75− V − ge

gl
V +

gi

gl
(75− V)

What happens if there is an excitory pulse ge = 2 nS for 1 ms? When
nothing happens ge = gi = 0 the equilibrium voltage is V = −75 mV.
When excitation occurs (ge/gl = 2) the system is described by

12.5dV
dt

= −75− V − 2V = −75− 3V , dV
dt

= −0.24V − 6

This equation has the solution

V(t) = −75e−0.24t − 6
∫ t

0
et−τ dτ = −75e−0.24t − 6

0.24
(1− e−0.24t

= −75e−0.24t − 25(1− e−0.24t) = −50e−0.24t − 25

The Post-synaptic Potential ...

For t = 1 we get V = −64.3. For t ≥ 1 we have ge = 0 and the voltage
is given by

12.5dV
dt

= −75− V , dV
dt

= −0.08V − 6

V(t) = −64.3e−0.24(t1) − 75(1− e−0.08(t−1)
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Notice Nonlinear Behavior

Consider the effect of an excitory input

C
dV
dt

= gl(El − V) + ge(Ee − V) + gi(Ei − V)

Steady state response (gi = 0)

V =
glEl + geEe

gl + ge
= − 75

1 + ge
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A Simple Neuron Model

As a first attempt at modeling neuron as a system with several inputs and
one output. The input is the excitation which is the post-synaptic potential
at the site for spike generation.

Inputs may be excitory, indicated by an arrow
in the figure, or inhibitory, indicated by a circle
in the figure. The output can be either excitory
or inhibitory. The output is either spikes or the
average spike rate.

A Static Model

The static relation between input and output has a sigmoid shape which
can be approximated by

y(u) =

{

kun

an+un if u ≥ 0
0 if u < 0

where k is a constant which gives the maximum spike rate and a a
parameter that gives the input where the spike rate is half of the maximum
value.
This function y(u) is called the Nake-Rushton function. The same function
has also been used in chemical kinetics and in population dynamics where
it is called the Michaelis-Menton function.

Nake-Rushton Function

Normalized spike rate y/b as a function of normalized potential u/a, for
n = 1 (dotted), n=2, n=5, and n=10 (dashed)
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A Dynamic Model

To obtain a dynamic model we must take into account that a change of the
post-synaptic potential does not give an instantaneous change in spike
rate. A simple model that captures this is

dy
dt

=
1
T
(−y + f(u))

where f is the Naka-Rushton function. This model gives the steady state
behavior y = f(u) and dynamics is characterized by the time constant T
which is in the range of ms.
This model can be considered as a static nonlinearity followed by a first
order dynamics with time constant T . If we consider several inputs the
model becomes

dy
dt

=
1
T
(−y + f(

∑

k

uk))

Graphical Representation
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Simple Neural Systems

◮ Investigate simple systems obtained by combining neurons in
different ways

◮ Negative feedback in the retina - a second order linear system
◮ Short term memory - a nonlinear second order system

Negative Feedback In the Retina

Cell structure: cones and horizontal cells. The cones are excited by light.
The horizontal cells are excited by the cones. There is inhibitory feedback
from the horizontal cells to the cones. A simple model is

Tc
dC
dt

= −C − kH + u

Th
dH
dt

= −H + Ch

C

H
This model is in standard form with

dx
dt

=

(

−1/Tc −k/Tc
1/Th −1/Th

)

x +

(

1/Tc
0

)

Simulation

Using the values Tc = 0.025 Th = 0.08, k = 4 we find
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An Improved Model for Inhibition

Physiological evidence indicate that the nonlinear model model

T1
dx1

dt
= −x1 +

1
1 + bx2

u

T2
dx2

dt
= 2x1 − x2

is better than the linear model

T1
dx1

dt
= −x1 − kx2 + u

Th
dC
dt

= 2x1 − x2

Steady state

x1 =
u

1 + 2k
, x1 = − 1

4b
+

√
1

16b2 +
u
2b

An Improved Model for Inhibition
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Pattern Generators and Muscle Control

Periodic phenomena are used much in biological systems
◮ Walking, running, swimming
◮ Breathing, heartbeat
◮ Sleeping
◮ Motor neurons

Control of Respiration

The following 4 neuron system can generate an oscillation for k = 3

dx
dt

=




−3 0 −k −5
−5 −3 0 −k
−k −5 −3 0
0 −k −5 −3


 x

Since the system is linear the oscillation will however not be asymptotically
stable.

Short Term Memory Circuit

df
dx

=
1
T

f(x) =
1
T



−x1 +

100x2
2

402 + x2
2

−x2 +
100x2

1

402 + x2
1




Equilibria

x1 = x2

x1 =
100x2

1

402 + x2
1

Three equilibria x1 = x2 = 0, x1 = x2 = 20 and x1 = x2 = 80

Equilibria

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

E1

E 2

Local Behavior Close to Equilibria

The Jacobian is given by

J =
1
T
�f(x)
�x

=




−1
320000x2

(402 + x2
2)

2

320000x1

(402 + x2
1)

2
−1




Evaluating the Jacobian for the different equilibria we get

J0 =
1
T

(

−1 0
0 −1

)

, J20 =
1
T

(

−1 1.6
1.6 −1

)

, J80 =
1
T

(

−1 0.4
0.4 −1

)

Eigenvalues

Tλ1 = −1, Tλ1 = −2.6, Tλ1 = −1.4
Tλ2 = −1, Tλ2 = 0.6, Tλ2 = −0.6

Phase Plane

x1 ’ = − x1 + 100 x22/(1600 + x22)
x2 ’ = − x2 + 100 x12/(1600 + x12)
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Braitenbergs Vehicle
The Italian-Austrian cyberneticist Valentino Braitenberg (now director of the
Max Planck Institute of Biological Cybernetics) proposed a vehicle as an
agent that can autonomously move around based on its sensor inputs. It
has primitive sensors that measure some stimulus at a point, and wheels
(each driven by its own motor) that function as actuators or effectors. In the
simplest configuration, a sensor is directly connected to an effector, so that
a sensed signal immediately produces a movement of the wheel.
Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology.
Cambridge, MA: MIT Press.
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A Neural Servo - with Carver Mead

◮ Visual sensor: C. A. Mead Analog VLSI and Neural Systems.
Addison-Wesley 1989

◮ Demonstrator
Optical sensor for encoder
Integrated all neural drive system
Pulses all the way from sensors to drive motor
Dual channels: exhibitory and inhibitory
Implementation of control systems with silicon neurons

◮ High parallelism by having multiple circuits and adding the pulses
◮ Extreme robustness part of the chip could be cut off
◮ Design theory for implementing neural controllers?

Implementation of Neural Controllers

◮ Inhibitory and exhibitory channels permit simple adding of signals
◮ Integral action

1
1 + sTi

Σkp

e u

◮ Derivative action
u

Σkp

e

−1
1 + sTd

PD Control using Silicon Neurons

DeWeerth, Nielsen, Mead, Astrom A simple neuron servo. IEEE Trans. Neural Networks 1991(2),248-251

Analog and Neural Motor Control

Neurons implemented as asynchronous systems in analog VLSI,
processing of the encoder signals were made on the same chip. Many
parallel systems implemented pulses were added to give high reliability!

Neural Motor Control - Details Neurons and Neuroscience
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A Simple Example - with Bo Bernhardsson 1999

Process model
dx = udt + dv,

where v(t) is a Wiener process,

E(v(t + s)− v(t))2 = psp

Compare strategies based on periodic and event based control
◮ Sample equidistantly
◮ Sample when output exceeds given limits
◮ First order hold or impulse control
◮ Compare performances

Sampled Data Control - Minimum Variance Control
Sample system and loss function with period h (alternative to lifting)

hVPFOH =

∫h

0
Ex2(t) dt = E

(

xT Q1x + 2xT Q12u + uT Q2u + Je
)

Q1(h) = h, Q12(h) =
h2

2
, Q2(h) =

h3

3
, R1(h) = h, Je =

h2

2

The minimal loss function is

VPFOH =
1
h
(R1S + Je) =

3 +
√

3
6

h

The optimal control law is

u = −1
h

3 +
√

3
2 +

√
3

x

Comparison of periodic and event based sampling for first-order stochastic
systems KJ Åström, B Bernhardsson - IFAC Proceedings, 1999 - Elsevier
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Event Based Control

A very simple control law: Apply a restoring impulse that brings the state to
zero whenever the output reaches the boundary pxp = d.(Impulse
sampling)
Let T±d be the exit time from 0 i.e. first
time tk when the boundary px(tk)p = d
is reached

The random variable t− x2
t is a martin-

gale, hence

h̄L := E(T±d) = E(x2
T±d

) = d2. 0 200 400 600 800 1000
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Crude control requires very slow sampling!
Sampling rate increases quadratically with precision

Stationary Distribution

Kolmogorov forward equation gives probability density for x

�f
�t

(x) =
1
2
�2f
�x2 (x)−

1
2
�f
�x

(d)δx +
1
2
�f
�x

(−d)δx .

Stationary distribution

f(x) =
1
d2 (d − pxp)

The mean variance is

VEIH =
d2

6
.

x

f(x)

Mean

sampling rate h̄E = d2

Comparison

Choose h̄E = h, to obtain the same average sampling rate for the control
laws.

VPZOH =
3 +

√
3

6
h = 0.79h, VPIH =

h
2

, VEIH =
h
6
= 0.17h

Traditional sample-data control requires 4.7 times faster sampling than
event based control to give the same error variance! What are the reasons
for the difference?

Faster detection (2/3) faster action (1/3)!

Simulation
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Summary

◮ Neural systems are very interesting
◮ Simple dynamic models give a lot of insight
◮ The standard tools are very useful

Modeling
Equilibria
Local behavior
Numerical solutions
Phase plane

◮ Much remains to be done
◮ We have barely touched the surface

◮ Pulse behavior
◮ Silicon neurons
◮ Event based control
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