Deep RL with Q-Functions

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine

Class Notes

1. Homework 2 is due next Monday

2. Project proposal due 9/25, that’s today!
« Remember to upload to both Gradescope and CMT (see Piazza post)

Today’s Lecture

1. How we can make Q-learning work with deep networks
2. A generalized view of Q-learning algorithms

3. Tricks for improving Q-learning in practice

4. Continuous Q-learning methods

* Goals:

* Understand how to implement Q-learning so that it can be used with
complex function approximators

* Understand how to extend Q-learning to continuous actions

Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;, s}, r;)} using some policy
Qe(s,a) < r(s,a) + ymaxa Qs(s’,a’)

fit a model to
ﬁ estimate return

generate
samples (i.e.
run the pollcy)
)))) improve the
online @ iteration algorithm: policy

: !
1. take some action a; and observe (s;, a;,s;, ;) a = arg maxa Qy(s, a)

2. set yi « 1(si,a;) +ymaxy Qu(s;,a))
: 2
. set ¢ <— argminy % > 1Qe(sisa:) — i

2. y; —T(S"LaaZ) + Y MmaXa QfP(i z)
3. ¢ ¢ — aZe(si,) (Qy(si,a;) — i)

What’s wrong?

online () iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. y; = r(s,,;,az-) + Y MmaXa qu(Sl' a’-) \
these are correlated!
3. ¢ @ — (S%aa@)(Q¢(S'Lvaz) Yi)

isn’t this just gradient descent? that converges, right?

Q—Iearning is not gradient descent!

Gb — Qb (Sz; az)(Qqﬁ(Suaz) _@z) + Y maxsy: Qq‘)(@

no gradient through target value

Correlated samples in online Q-learning

online @ iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s;, ;) - target value is always changing
2. o0 — ade d¢ > (4, aZ)(ch(Sza a;) — [r(si,a;) + v maxa Q¢(s;, a;)])

AR N A N SN

synchronized parallel Q-learning asynchronous parallel Q-learning

get(s,a,s’,'r%—l I I I

update qb — el

get (s,a,s’,r)—l 0 B

update ¢ +— Bl

NN N B H

Another solution: replay buffers

online (iteration algorithm: special case with K = 1, and one gradient step

1. take some action a; and observe (s;,a;,s;, ;)

2. oo — O‘ d¢ > (sq, aZ)(Qqﬁ(S%v a;) — [r(sia;) + v maxay qu(s;; a;)])

full fitted Q-iteration algorithm:

any policy will work! (with broad support)

] 0

£ 2. set y; < r(s;,a;) +7 maxs/ Qo (s;,a;) just load data from a buffer here
X

. 1 2
3. set ¢ <~ argming 5) ; [[Qe(si,a;) — yil still use one gradient step
dataset of transitions
Fitted Q-iteration

i T '\:_

Another solution: replay buffers

Q-learning with a replay buffer:
@ 1. sample a batch (s,,;,aq;,s’- r;) from B

2. 0 90—« Zz do (S’M a'b)(ch(SzvaZ) - [T(Sivai) T 7Y MaXa’ Q'iﬁ(sga a;)])

but where does the data come from?

need to periodically feed the replay buffer...

(s,a,s’,r)

_ dataset of transitions -
(“replay buffer”)

off-policy

.’p I ,\:\') Q-learning

~

m(als) (e.g., e-greedy)

Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
, K=1is common, though
2. sample a batch (S'L'a a;,s;,r;) from B larger K more efficient

3. ¢ ¢ —ad, T a)(Qslsiyan) — [r(si,ai) + 7 maxa Qu(s), af)))

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

mw(als) (e.g., e-greedy)

What’s wrong?

online () iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. y; = r(s,,;,az-) + ymaxar Q4 (s;, aj) N
A, St e
3. 0 ¢ — (S%aa@)(Qé(Smaz) yi)

use replay buffer

Q—Iearning is not gradient descent!

¢ ¢ — (s@, a;)(Qo(si, a;) —@i) + y maxy’ Qqﬁ(@ ;:‘;Sb:se;::" a

no gradient through target value

Q-Learning and Regression

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s.,r;)} using some policy, add it to B

2. sample a batch (s,l;,a?;,s’- r;) from B

3. 9 ¢ — &ZZ adé 2 (ss,a:)(Qo(si,a;) — [r(ss,a;) + 7 maxar Qu(s;,aj)])

K X

one gradient step, moving target

full fitted Q-iteration algorithm:
1. collect dataset {(s;,a;,s;,r;)} using some policy

2. set y; < r(s;,a;) + Y MaXy! Qy(s;, aj)

K x) 1 2
3. set ¢ <—argming 5) . [|Q4s(si,a;) — yil

perfectly well-defined, stable regression

Q-Learning with target networks

QQ-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s,r;)} using some policy, add it to B

N x 3. sample a batch (s%, a;,s;,r;) from B

K x
4. ¢<_¢_azz Ao “(si,a:)(Qo(si, a;) —

[7(si,@i) + vy maxar Qg (sj, a3)])

targets don’t change in inner loop!

uolissaigdal pasiniadns

“Classic” deep Q-learning algorithm (DQN)

(Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

NXK_ 3. sample a batch (S@-,ai,s’-,ri) from B
X

4. ¢« Qﬁ_azz b 2 (si,a;)(Qo(si,a;) — [r(si,a;) + v maxar Qg (s;, al)])

?,7 ?,

“classic” deep Q-learning algorithm:

1. take some action a; and observe (s;, a;,s, r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly

3. compute y; = 7"3 + ymaxy/ Qg (S- a-) using target network @)y K =1
4. ¢« ¢ — 0423 b = (s5,a5)(Qg(s),a5) — yj)

5. update ¢': copy ¢ every N steps

You'll implement this in HW3!

Mnih et al. ‘13

Alternative target network

“classic” deep Q-learning algorithm:

> 1. take some action a; and observe (s;, a;,s;,r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; = 7“3 + Y maxy Q¢I(:) using target network @)y
1. ¢<—¢5—Oézj dé (Sjvaj)(Qé(sjvaj) yj)

5. update ¢’ @' < ¢
Intuition: — — maximal lag
get target from here f \\ \ no lag here

(s,a,s’,7) o (s,a,s,r) ¢ (s,as,r) ¢ (s,as’,r) ¢ (s,a5s,r) o

Feels weirdly uneven, can we always have the same lag?
Popular alternative (similar to Polyak averaging):

5. update ¢': ¢’ < 7¢" + (1 —7)¢ 7 = 0.999 works well

Fitted Q-iteration and Q-learning

QQ-learning with replay buffer and target network: DON: N =1, K = 1
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B

NXK 3. sample a batch (sz,a?;,s’- r;) from B
4. ¢+ ¢ — @Zz b 2 (si,a;)(Qg(si,a;) — [r(8i,a;) + vy maxar Qg (85, a;)])

Fitted Q-learning (written similarly as above):

1. collect M datapoints {(s;,a;, s, ;) } using some policy, add them to B

2. save target network parameters: ¢’ < ¢

N x 3. sample a batch (S@, a;,s;,r;) from B
1 & , just SGD
4. ¢ <+ o — 0421 dé (Szaaz)(ch(Sz: a;) — [r(s;,a;) + v maxy ch’(Si s z)])

A more general view

Q-learning with replay buffer and target network:
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B

3 sample a batch (si,ai,s- r;) from B

4 ¢ ¢ — O‘Zz b 2 (si,a:)(Qg(si,a;) — [r(si,a;) + ymaxar Qg (sj,a;)])

process 2
target update

| 4

process 1: data collection

(s,a,s’,r)

4

|

m(als) (e.g., e-greedy) evict old data

A more general view

rocess 1: data collection ¢ pro};: e d2 t
V | parameters arget update parameters
!
(s,a,s',7) ¢ ¢
~ datasetoftransitons
(“replay buffer”)
P N

m(als) (e.g., e-greedy) evict old data

* Online Q-learning (last lecture): evict immediately, process 1, process 2, and
process 3 all run at the same speed

 DQN: process 1 and process 3 run at the same speed, process 2 is slow

* Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner
loop of process 1

Break

Are the Q-values accurate?

- - NN
8 8 8 8

Average Reward per Episode
g

Average Reward on Breakout 3 1800 Average Reward on Seaquest 4 Average Q on Breakout
81600 g 3s N
ﬂ 1400 | . S 3 AN
Mot 32 il TRE
L "\ 1000 t 5
l’,'ﬂm"”ﬂf J 3 800 !"1“ $. 2
V 15
i ool w‘ ;v Jﬂ 8
2400 5 [V g 1
g fl ' ° /
B 200 | 2 05

>

-AJ"

0 <
0 10 20 30 40 50 60 70 80 90 100

Training Epochs

0 10 20 30 40 50 60 70 80 90 100

Training Epochs

0
0 10 20 30 40 50 60 70 80 90 100

Training Epochs

.... |

257
o4
2+
2

S nd
20
AL
174

10 <4
15

4

N84

X T
EL)

T
L

T
w

% 1 T T T T 1
86 100 105 110 115 130

Action-Values (Q)

05

0.5

Average Action Value (Q)

Average Q on Seaquest

/

O - NWHdG?OOOOND® DO

0 10 20 30 40 50 60 70 80 90 100

Training Epochs

As predicted Q
increases, soO
does the return

Are the Q-values accurate?

| Space Invaders ~ Time Pilot - Zaxxon
% ‘ ‘ 8 IDQN estimate
= 15 -
3 15 4 :
Q ouble DQN estimate
= 10 ; 1.0 2 . -
«© ouble DQN true value
> T DQN true value

o

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

Overestimation in Q-learning

target value y; = r; + maXa' o (S;'a a;-)

N

this last term is the problem

imagine we have two random variables: X7 and X
FElmax (X1, X3)| > max(E[X;], F[X3])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence maxa Qg (s',a") overestimates the next value!

note that maxy Qg (s',a’) = Qu (s', argmaxay Qg (s',a’))

value also comes from Q4 action selected according to @)y

Double Q-learning

E[maX(Xl, XQ)] Z maX(E[Xl], E[XQ])

note that maxa Qg (s',a’) = Qg (s', arg maxa Qg (s’,a’))

value also comes from @)y action selected according to @)y

N\ /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks:

Qo (s,a) <7+ YQo¢x (Slv arg II];}X Qoa (S,a al))

Qos(s,a) =7+ 7Qq, (8 argmax Qy, (s, ')

N /

if the two QQ’s are noisy in different ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + vQy (s', arg max, Q4 (s’,a’))

double Q-learning: y = r + yQ4 (s, arg maxy/ ’ ,a’))
just use current network (not target network) to evaluate action

still use target network to evaluate value!

Multi-step returns

Q-learning target: y;; = rj; +ymaXa,, , Q¢ (Sjt+1,a541)

7

these are the only values that matter if Q4 is bad! these values are important if Q¢ is good

] ?
where does the signal come from! Q-learning does this: max bias, min variance

. N T
remember this? torcritic. Vo (0) = = 303 Volog mo(anlsi

Actor-critic:
N =1 t=1

- not unbiased (if the critic is not perfect)

N T 1
1
Policy gradient: VyJ(0) =~ N Z Z Vo log mg(a; ¢|sit) ((Z ‘(sier @i)) — b)
i=1 t=1

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

_ t+N—-1 ¢ N
Yit = 2oy Y T e+ maxa, ,, y Qo (Sjt4N,)14 N)

N-step return estimator

Q-learning with N-step returns

_ t+N—-1 ¢+ N
Yjt = Dop—y 7V Tiw + Y maXa,,, Qp (Sj 4N, Q544 N)

. : . |
this is supposed to estimate Q™ (s;, s, a;,¢) for 7 - only actually correct when learning on-policy

1 if a; = argmax, Q¢(St at) why?
_ t) yi
m(a[s:) { 0 otherwise

we need transitions s;,a; 4,8 ¢+1 to come from w for ¢/ —t < N —1
(not an issue when N = 1)

how to fix? * ignore the problem
e often works very well

* cut the trace — dynamically choose N to get only on-policy data
* works well when data mostly on-policy, and action space is small

* importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning.” Munos et al. ‘16

Q-learning with continuous actions

What'’s the problem with continuous actions?

m(agls;) = { Lif a, :@axat Qé(st@ this max

0 otherwisé

target value y; = r; + MaXy! Qg (s;.’ @ this max

particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

 gradient based optimization (e.g., SGD) a bit slow in the inner loop

* action space typically low-dimensional — what about stochastic
optimization?

Q-learning with stochastic optimization

Simple solution:
mgXQ(S, a) ~ max{Q(s,ai),...,Q(s,ayn)}
(a1, ...,an) sampled from some distribution (e.g., uniform) - not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

* cross-entropy method (CEM) works OK, for up to about 40

* simple iterative stochastic optimization dimensions

* CMA-ES

 substantially less simple iterative stochastic optimization

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

1 - A
Qols.2) = —5(a— pg(s) T Po()(a — o) +Vols) T I I il

NAF Architecture.

NAF: Normalized Advantage Functions

- loses representational power
arg max Qy(s,a) = pg(s) max Qy(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) deterministic” actor-critic

(really approximate Q-learning)
maxa Q¢ (s,a) = Qu(s,argmax, Qy(s,a))

idea: train another network pp(s) such that pg(s) ~ arg max, Q4(s,a)

dQ, dadQy

how? just solve 6 < a a S, [y (S = %@
w? ju v rg maxg Qg (s, to(s)) % = 70 a

new target y; = r; +vQu (s}, ug(s})) = r; +7Qy (s}, arg maxa Qg (s}, a}))

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

take some action a; and observe (s;,a;,s;,r;), add it to B

sample mini-batch {s;, a;,s’,r;} from B uniformly

compute y; = rj + 7 maxa Q¢f(s’:, Hgr (s;)) using target nets Qg and figr
L PP - 0423 a5 (85,25)(Qg(s;,a5) — y5)

O 0+5) . dQ()d%b(sj,a)

. update ¢’ and @’ (e.g., Polyak averaging)

S N

Simple practical tips for Q-learning

* Q-learning takes some care to stabilize
* Test on easy, reliable tasks first, make sure your implementation is correct

Pong Breakout . _ 250~ Venture
30 - 400 AT 400000 Video Pinball

? 2001

15 - 320 T 320000

0 _ : | 240 240000 o
1004

160 1600004

804 80000 -/ 501

-304 : : : . 0 4=t 0

-15

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

* Large replay buffers help improve stability
* Looks more like fitted Q-iteration
* |t takes time, be patient — might be no better than random for a while

e Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman

Advanced tips for Q-learning

* Bellman error gradients can be big; clip gradients or user Huber loss

§|x| — 8%/2 otherwise

L(X):{x2/2 if [x| <6

* Double Q-learning helps a lot in practice, simple and no downsides
* N-step returns also help a lot, but have some downsides

* Schedule exploration (high to low) and learning rates (high to low),
Adam optimizer can help too

* Run multiple random seeds, it’s very inconsistent between runs

Slide partly borrowed from J. Schulman

Review

* Q-learning in practice
e Replay buffers Qy(s,a) < r(s,a) + ymaxa Qu(s’,a’)

e Target networks Fiee radli
F estimate return

e Generalized fitted Q-iteration

run the pollcy)

* Double Q-learning e (o l

* Multi-step Q-learning

e Q-learning with continuous
actions
 Random sampling
* Analytic optimization
* Second “actor” network

improve the
policy

a = argmax, Q4(s, a)

Fitted Q-iteration in a latent space

target: reconstruction Deep Autoencoder
* “Autonomous (@ anteeee
reinforcement S5 e

improved by
Reinforcement
Learning

* policy

low-dimensional

learning from raw
visual data,” Lange &
Riedmiller ‘12

* Q-learning on top of
latent space learned
with autoencoder

e Uses fitted Q-iteration

e Extra random trees for
function System
approximation (but
neural net for
embedding)

gradient descent

high-dimensional

- v i !A Nb maps feature
@@ — vectors to
R e A=A actions

-

input: vector of pixel values

action a

Q-learning with convolutional networks

e “Human-level control
through deep
reinforcement learning,”

Mnih et al. ‘13 e ®
* Q-learning with RRRRRR
convolutional networks e *RRRR
* Uses replay buffer and o | aaa
target network ® aaaa
* One-step backup l
* One gradient step ~ . .

* Can be improved a lot
with double Q-learning
(and other tricks)

Q-learning with continuous actions

e “Continuous control with deep
reinforcement learning,” Lillicrap
et al. ‘15

 Continuous actions with
maximizer network

e Uses replay buffer and target
network (with Polyak averaging)

* One-step backup

* One gradient step per simulator
step

Q-learning on a real robot

* “Robotic manipulation
with deep reinforcement
learning and ...,” Gu¥,
Holly*, et al. ‘17

* Continuous actions with
NAF (quadratic in actions)

* Uses replay buffer and
target network

* One-step backup

* Four gradient steps per
simulator step for
efficiency

e Parallelized across '
multiple robots

Large-scale Q-learning with continuous actions

(QT-Opt)

—
N—_
stored data from all
past experiments
!/
- {(S’iaaiasi)}i

71571

live data collection

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills

training buffers

off-policy (s,a,s’,r)

on-policy (s, a,s’,r)

labeled (s,a, Qr(s,a))

\

(

training threads

meinHQg(S, a) — Qr(s, a)||2

N

J

A

J

4 Bellman updaters \

compute Qr(s,a) =

r + maxy Qg(s’,a’

)
= 2,

J

minimize) . (Q(si,a;) —

[r(si, i) + maxa; Q(sf, a7)])?

Q-learning suggested readings

 Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning

Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural
networks

* Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement
learning: early image-based Q-learning method using autoencoders to construct
embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a
very effective trick to improve performance of deep Q-learning.

Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous
Q-learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.

Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.

