
Deep RL with Q-Functions

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine



Class Notes

1. Homework 2 is due next Monday

2. Project proposal due 9/25, that’s today!
• Remember to upload to both Gradescope and CMT (see Piazza post)



Today’s Lecture

1. How we can make Q-learning work with deep networks

2. A generalized view of Q-learning algorithms

3. Tricks for improving Q-learning in practice

4. Continuous Q-learning methods

• Goals:
• Understand how to implement Q-learning so that it can be used with 

complex function approximators

• Understand how to extend Q-learning to continuous actions



Recap: Q-learning

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value



Correlated samples in online Q-learning
- sequential states are strongly correlated

- target value is always changing

synchronized parallel Q-learning asynchronous parallel Q-learning



Another solution: replay buffers

special case with K = 1, and one gradient step

any policy will work! (with broad support)

just load data from a buffer here

dataset of transitions

Fitted Q-iteration

still use one gradient step



Another solution: replay buffers

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

+ samples are no longer correlated

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer…



Putting it together

K = 1 is common, though 
larger K more efficient

dataset of transitions
(“replay buffer”)

off-policy
Q-learning



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value

use replay buffer

This is still a 
problem!



Q-Learning and Regression

one gradient step, moving target 

perfectly well-defined, stable regression



Q-Learning with target networks

targets don’t change in inner loop!

su
p

e
rvise

d
 re

gre
ssio

n



“Classic” deep Q-learning algorithm (DQN)

Mnih et al. ‘13You’ll implement this in HW3!



Alternative target network

Intuition:
get target from here no lag here

maximal lag

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):



Fitted Q-iteration and Q-learning

just SGD



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters

• Online Q-learning (last lecture): evict immediately, process 1, process 2, and 
process 3 all run at the same speed

• DQN: process 1 and process 3 run at the same speed, process 2 is slow
• Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner 

loop of process 1



Break



Are the Q-values accurate?

As predicted Q 
increases, so 
does the return



Are the Q-values accurate?



Overestimation in Q-learning



Double Q-learning



Double Q-learning in practice



Multi-step returns



Q-learning with N-step returns

+ less biased target values when Q-values are inaccurate

+ typically faster learning, especially early on

- only actually correct when learning on-policy

• ignore the problem
• often works very well

• cut the trace – dynamically choose N to get only on-policy data
• works well when data mostly on-policy, and action space is small

• importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning.” Munos et al. ‘16



Q-learning with continuous actions

What’s the problem with continuous actions?

this max

this max

How do we perform the max?

particularly problematic (inner loop of training)

Option 1: optimization

• gradient based optimization (e.g., SGD) a bit slow in the inner loop

• action space typically low-dimensional – what about stochastic 
optimization?



Q-learning with stochastic optimization

Simple solution:
+ dead simple

+ efficiently parallelizable

- not very accurate

but… do we care? How good does the target need to be anyway?

More accurate solution:

• cross-entropy method (CEM)
• simple iterative stochastic optimization

• CMA-ES
• substantially less simple iterative stochastic optimization

works OK, for up to about 40 
dimensions



Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

Gu, Lillicrap, Sutskever, L., ICML 2016

NAF: Normalized Advantage Functions
+ no change to algorithm

+ just as efficient as Q-learning

- loses representational power



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016)
“deterministic” actor-critic 
(really approximate Q-learning)



Q-learning with continuous actions

Option 3: learn an approximate maximizer



Simple practical tips for Q-learning

• Q-learning takes some care to stabilize
• Test on easy, reliable tasks first, make sure your implementation is correct

• Large replay buffers help improve stability
• Looks more like fitted Q-iteration

• It takes time, be patient – might be no better than random for a while

• Start with high exploration (epsilon) and gradually reduce
Slide partly borrowed from J. Schulman



Advanced tips for Q-learning

• Bellman error gradients can be big; clip gradients or user Huber loss

• Double Q-learning helps a lot in practice, simple and no downsides

• N-step returns also help a lot, but have some downsides

• Schedule exploration (high to low) and learning rates (high to low), 
Adam optimizer can help too

• Run multiple random seeds, it’s very inconsistent between runs

Slide partly borrowed from J. Schulman



Review

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy

• Q-learning in practice
• Replay buffers
• Target networks

• Generalized fitted Q-iteration

• Double Q-learning

• Multi-step Q-learning

• Q-learning with continuous 
actions
• Random sampling
• Analytic optimization
• Second “actor” network



Fitted Q-iteration in a latent space

• “Autonomous 
reinforcement 
learning from raw 
visual data,” Lange & 
Riedmiller ‘12

• Q-learning on top of 
latent space learned 
with autoencoder

• Uses fitted Q-iteration
• Extra random trees for 

function 
approximation (but 
neural net for 
embedding)



Q-learning with convolutional networks

• “Human-level control 
through deep 
reinforcement learning,” 
Mnih et al. ‘13

• Q-learning with 
convolutional networks

• Uses replay buffer and 
target network

• One-step backup

• One gradient step

• Can be improved a lot 
with double Q-learning 
(and other tricks)



Q-learning with continuous actions

• “Continuous control with deep 
reinforcement learning,” Lillicrap
et al. ‘15

• Continuous actions with 
maximizer network

• Uses replay buffer and target 
network (with Polyak averaging)

• One-step backup

• One gradient step per simulator 
step



Q-learning on a real robot

• “Robotic manipulation 
with deep reinforcement 
learning and …,” Gu*, 
Holly*, et al. ‘17

• Continuous actions with 
NAF (quadratic in actions)

• Uses replay buffer and 
target network 

• One-step backup

• Four gradient steps per 
simulator step for 
efficiency

• Parallelized across 
multiple robots



Large-scale Q-learning with continuous actions 
(QT-Opt)

live data collection

stored data from all 
past experiments

training buffers Bellman updaters

training threads

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, 
Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-
Based Robotic Manipulation Skills



Q-learning suggested readings
• Classic papers

• Watkins. (1989). Learning from delayed rewards: introduces Q-learning
• Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural 

networks

• Deep reinforcement learning Q-learning papers
• Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement 

learning: early image-based Q-learning method using autoencoders to construct 
embeddings

• Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

• Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a 
very effective trick to improve performance of deep Q-learning.

• Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous 
Q-learning with actor network for approximate maximization.

• Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based 
acceleration: continuous Q-learning with action-quadratic value functions.

• Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network 
architectures for deep reinforcement learning: separates value and advantage 
estimation in Q-function.


