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Class Notes

1. Homework 2 due today (11:59 pm)!

e Don’t be late!

2. Homework 3 comes out this week
 Start early! Q-learning takes a while to run



Today’s Lecture

Why does policy gradient work?

Policy gradient is a type of policy iteration

Policy gradient as a constrained optimization
From constrained optimization to natural gradient

A S

Natural gradients and trust regions

 Goals:

* Understand the policy iteration view of policy gradient
* Understand how to analyze policy gradient improvement
* Understand what natural gradient does and how to use it



Recap: policy gradients

REINFORCE algorithm:

1. sample {7*} from my(as|s;) (run the policy)

2. VoJ(0) = Y, (Zf:l Vo log mg(al|st) (Z;If:t r(si,,ai,)))
3. 00+ aVyJ(h)

T
QW(Xta w) = Z r(Xe,up)
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fit a model to
estimate return

generate
samples (i.e.
run the policy)
‘ improve the
1 N policy
VoJ(0) ~ ~ 2_:1 ; Vo log mo(ai t[sit) Q7 0 0+ aVeJ(0)
T -

“reward to go”

can also use function approximation here



Why does policy gradient work?

fiﬂ- Xt, ut)
Vo J(0) ~ > Vologmg(ailsii)AF,

1

N < fit a model to

i=1 t=1 ﬁ B e
generate
samples (i.e.
. run the policy)
@ 1. Estimate A7 (s¢, a;) for current policy 7
A , , ‘ i th
2. Use A™(s4,a4) to get improved policy 7’ |mppr(c))|\i/§y .

0 0+ aVyJ(0)

look familiar?

policy iteration algorithm:

@ 1. evaluate A™(s,a)
2. set w7’



Policy gradient as policy iteration -z, [mestjat{
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Policy gradient as policy iteration

importance sampling

J(0') = J(0) = Errpy, (r) [ZWtA st,at] Bavol (@) = [ plo) (a1

—/Zggp(w) (z)dx
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is it OK to use py(s;) instead?



lgnoring distribution mismatch?

?
T (atlse) ” [ [fef (aelst) 4 ,n “
ES ~ 1\ S¢ EatN’ﬂ' at |S¢ Aﬂ-e S 7a ESt St aAr~Toglag St A o S 7a
Et: fpg()[ o |>[,ﬁ9(at,8t) X E: oails:) (st, a4)

e (at]st)
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|
why do we want this to be true? A(Ql)
JO) —J0O)~ A0 = ¢ « arg max A () 2. Use A™(s;,a;) to get improved policy 7/

9/’

is it true? and when?

Claim: pg(s;) is close to pg/(s¢) when 7y is close to g



Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

Simple case: assume 7y is a deterministic policy a; = my(s;)

7o 18 close to g if wo (ar # mo(se)|st) < €

Do’ (St) — (1 T G)tpﬁ(st) + (1 — (1 — E)t))pmistake(st) seem familiar?
l_'_l 1 ]
probability we made no mistakes some other distribution

por(s¢) — po(se)| = (1 — (1 — €)") [pmistake (8¢) — po(se)| < 2(1 — (1 — €)")
useful identity: (1 —¢€)* > 1 — et for € € [0, 1] < 2et

not a great bound, but a bound!



Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

General case: assume 7y is an arbitrary distribution

7o 18 close to g if |7er (ag|sy) — mo(ag|ss)| < € for all sy

Useful lemma: if [px (z)—py ()| = €, exists p(x, y) such that p(x) = px(x) and p(y) = py(y) and p(x =y) =1 — ¢
= px(x) “agrees” with py (y) with probability €

= 7y (as|sy) takes a different action than my(as|s;) with probability at most €

por(s¢) — po(se)] = (1 — (1 — €)")|Pmistake(St) — pa(se)] < 2(1 — (1 —¢)")
< 2et

Proof based on: Schulman, Levine, Moritz, Jordan, Abbeel. “Trust Region Policy Optimization.”



Bounding the objective value

mor 18 close to my if |me: (ar|sy) — mg(as|sy)| < e for all s,

por(st) — po(se)| < 2et
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L maximizing this maximizes a bound on the thing we want!



Where are we at so far?

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[ i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that |mgr (as|s¢) — mo(as|s)| < e

for small enough e, this is guaranteed to improve J(6') — J(60)



Break



A more convenient bound

Claim: pg(s;) is close to pg/(s¢) when g is close to g

7o 18 close to my if |mer (as|sy) — mo(ag|ss)| < € for all s;

por(st) — po(se)| < 2et

1
a more convenient bound: |me(asst) — mo(as|s:)| < \/§DKL(7T6V(at\St)HWQ(at!St))

= Dxr(mg (ag|sy)||me(as|s:)) bounds state marginal difference

o]

Dxr(p1(z)||p2(2)) = Eznp, (2) llog

KL divergence has some very convenient properties that make it much easier to approximate!



How do we optimize the objective?

St)

0 Earpy(on) | Earomafaton) | o215t g
arg%@x; st~pg t)[ ¢~ (ag|se) |:7T9(at’ Y (Styat)
such that Dgr,(mg (as|s:)||me(ag|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)



How do we enforce the constraint?

o (at|st)

) s o)

atlst

/
0 <—argmgz}x Estwpe(st) [ a;~mo(at|st) [
t
<€

such that Dkr, (mg (a¢|st)||me(az|st))

e (at ’St)

TTar\a+|S
=" Eapio [Eamwsg[ o(axlst) tA”@(st,aa”—A(DKL(wmaast)Hvrecat\sm—e)
t

1. Maximize L£(6', \) with respect to 6’ < can do this incompletely (for a few grad steps)
2. A+ A+ a(Dky (7o (agse)||mo(as]st)) — €)

Intuition: raise A if constraint violated too much, else lower it

an instance of dual gradient descent (more on this later!)



How (else) do we optimize the objective?

A(9))

A
| 1

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[ i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that Dgp (mgr(as|s:)||ma(ar|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)

4 0" < arg max VoA0) (6" —0)

such that Dgr(mgr (a¢|st)||me(az]st)) < e

> Use first order Taylor approximation for objective (a.k.a., linearization)



How do we optimize the objective?

t

atlst

0’ <—argmax Estmpg(st)[ a,~mo(az|st) [ o (arlst) tAWQ(St,at)“
<e€

such that Dgp, (mgr (a¢|se)||ma(as|st))

0 — arg max VoA0)1 (6 —0)

such that Dkry (mg (a¢|s)||me(ass:)) < e

T AW) = 3 Bupin) [ Eaross

o (Ag|St)
e (at\st)

(see policy gradient lecture for derivation)

= Z Es,~po(s:)
t

- Z EStNPG(St) |
t

Eat’vﬂ'a(aﬂst)

_Eat ~Tg (at |St)

| o (aN&;)

as|st)

:fytVQ log 7o (a¢|s:)

exactly the normal policy gradient!

AT (s¢,a)]]

V'V log mor (a|sy) A™ (s, a’f)”

vtVQ log mg(a¢|s¢) A™ (s, at)} ]

= Vo J(6)




Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

0 < 9-|-OéV9J(9) W@(at|5t)

some parameters change probabilities a lot more than others!

Claim: gradient ascent does this:

0« arg max Vo (0)' (6" —0)

o — 9+\/ ___VyJ(6)
such that [|§ — 0'|? < e Ve J(6)]]




Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

not the same!

0" < arg max VoJ(0)1 (0 —0)

such that [|§ — 0'||? < e
second order Taylor expansion

e

1
Dy, (7o ||79) = 5(6” — H)TF(H’ —0) F = FE,, [Vglogmg(al|s)Vylog mg(a|s)T]

Fisher-information matrix can estimate with samples



Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

1
D (o ||mo) = 5 (6" = 0)"F (6" — 6)

0 =0+ aF 'VyJ(6) \

2€
“= \/ Vo (0)TFV 4.7 (6)

natural gradient




s this even a problem in practice?

’5:/\%
k . (a)*Vanilla’ policy gradlents
o
g
2 2 =
r(s¢,a;) = —s; — a; 3
o
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(image from Peters & Schaal 2008)
(a)‘Vanilla’ policy gradients  (b) Natural policy gradlents
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(figure from Peters & Schaal 2008)




Practical methods and notes

* Natural policy gradient 0 =0+ aF~'VyJ(0)
e Generally a good choice to stabilize policy gradient training

* See this paper for details:
» Peters, Schaal. Reinforcement learning of motor skills with policy gradients.

* Practical implementation: requires efficient Fisher-vector products, a bit
non-trivial to do without computing the full matrix

e See: Schulman et al. Trust region policy optimization

2
* Trust region policy optimization &= \/vgj(e) 6

TEVyJ(6)
* Just use the IS objective directly
* Use regularization to stay close to old policy
* See: Proximal policy optimization



Review

* Policy gradient = policy iteration

* Optimize advantage under new policy state AT (x4, )
distribution ]
fit a model to
* Using old policy state distribution optimizes a ‘ :
bound, if the policies are close enough
generate
* Results in constrained optimization problem samples (i.e.
. . . . . ) run the policy)
* First order approximation to objective = gradient

ascent

; TR e
. . policy
* Regular gradient ascent has the wrong constraint,

use natural gradient 6« 0+ aVyJ(0)

* Practical algorithms
* Natural policy gradient
* Trust region policy optimization



