Advanced Policy Gradients

CS 285: Deep Reinforcement Learning, Decision Making, and Control

Sergey Levine

Class Notes

1. Homework 2 due today (11:59 pm)!

e Don’t be late!

2. Homework 3 comes out this week
 Start early! Q-learning takes a while to run

Today’s Lecture

Why does policy gradient work?

Policy gradient is a type of policy iteration

Policy gradient as a constrained optimization
From constrained optimization to natural gradient

A S

Natural gradients and trust regions

 Goals:

* Understand the policy iteration view of policy gradient
* Understand how to analyze policy gradient improvement
* Understand what natural gradient does and how to use it

Recap: policy gradients

REINFORCE algorithm:

1. sample {7*} from my(as|s;) (run the policy)

2. VoJ(0) = Y, (Zf:l Vo log mg(al|st) (Z;If:t r(si,,ai,)))
3. 00+ aVyJ(h)

T
QW(Xta w) = Z r(Xe,up)

~

fit a model to
estimate return

generate
samples (i.e.
run the policy)
‘ improve the
1 N policy
VoJ(0) ~ ~ 2_:1 ; Vo log mo(ai t[sit) Q7 0 0+ aVeJ(0)
T -

“reward to go”

can also use function approximation here

Why does policy gradient work?

fiﬂ- Xt, ut)
Vo J(0) ~ > Vologmg(ailsii)AF,

1

N < fit a model to

i=1 t=1 ﬁ B e
generate
samples (i.e.
. run the policy)
@ 1. Estimate A7 (s¢, a;) for current policy 7
A , , ‘ i th
2. Use A™(s4,a4) to get improved policy 7’ |mppr(c))|\i/§y .

0 0+ aVyJ(0)

look familiar?

policy iteration algorithm:

@ 1. evaluate A™(s,a)
2. set w7’

Policy gradient as policy iteration -z, [mestjat{

J(0') = J(0) = J(0") = Esyrp(so) [V (s0)]
— J(8') = Ermapy () [V (50)] clabmc J(0') =) = Brepy [Z AT e

= J(¢) - B npg (1) Z YV (st) Z’thm]

= O)+ By | 300 0V (5001) — V™ (50)
| t=0

= Brapy () [Z V7 (sh,21)

o0

Te~pgr (T) Z 7t St at + 7V (SH-l) -V (St))]

B nopgr () [Z V(YT (Sp41) — VT (St))]

t=0

=k

= Erpy () Z VAT (84, ay)

Policy gradient as policy iteration

importance sampling

J(0') = J(0) = Errpy, (r) [ZWtA st,at] Bavol (@) = [plo) (a1

—/Zggp(w) (z)dx
(z)

expectation under wgfj advantage under my / (@%f (z)dx

= FEpq(a) {pgg f(:z:)}

ETrvpgf (1) [Z fYtAWH (Sta at)] B Z Estwpef(st) [Eat’“ﬂef(aﬂst) htAm (St’ at)”
t

t

mor(at[st) 4 r
— ZEStNPQf(St) [EatNﬂe(at|St) |:7T il ')/tA B(St,at)]]

P o(a¢|st)

|

is it OK to use py(s;) instead?

lgnoring distribution mismatch?

?
T (atlse) ” [[fef (aelst) 4 ,n “
ES ~ 1\ S¢ EatN’ﬂ' at |S¢ Aﬂ-e S 7a ESt St aAr~Toglag St A o S 7a
Et: fpg()[o |>[,ﬁ9(at,8t) X E: oails:) (st, a4)

e (at]st)
\ J
|
why do we want this to be true? A(Ql)
JO) —J0O)~ A0 = ¢ « arg max A () 2. Use A™(s;,a;) to get improved policy 7/

9/’

is it true? and when?

Claim: pg(s;) is close to pg/(s¢) when 7y is close to g

Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

Simple case: assume 7y is a deterministic policy a; = my(s;)

7o 18 close to g if wo (ar # mo(se)|st) < €

Do’ (St) — (1 T G)tpﬁ(st) + (1 — (1 — E)t))pmistake(st) seem familiar?
l_'_l 1]
probability we made no mistakes some other distribution

por(s¢) — po(se)| = (1 — (1 — €)") [pmistake (8¢) — po(se)| < 2(1 — (1 — €)")
useful identity: (1 —¢€)* > 1 — et for € € [0, 1] < 2et

not a great bound, but a bound!

Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

General case: assume 7y is an arbitrary distribution

7o 18 close to g if |7er (ag|sy) — mo(ag|ss)| < € for all sy

Useful lemma: if [px (z)—py ()| = €, exists p(x, y) such that p(x) = px(x) and p(y) = py(y) and p(x =y) =1 — ¢
= px(x) “agrees” with py (y) with probability €

= 7y (as|sy) takes a different action than my(as|s;) with probability at most €

por(s¢) — po(se)] = (1 — (1 — €)")|Pmistake(St) — pa(se)] < 2(1 — (1 —¢)")
< 2et

Proof based on: Schulman, Levine, Moritz, Jordan, Abbeel. “Trust Region Policy Optimization.”

Bounding the objective value

mor 18 close to my if |me: (ar|sy) — mg(as|sy)| < e for all s,

por(st) — po(se)| < 2et

Z ESt’VPQ' (st)

t

Z EStNP@(St)

ZPG' st)f(st) > ZPG st) f — |po(st) — pgf(st)|msax f(st)

Eat’\’ﬂ'e (ai|st)

EatN’ﬂ'Q (at|st)

o (ar]st)

> Epg(st)[f(st)] — 2el maxf(st)

St

o (atls 1]
w20 ¢ gy, m0)|| > OT i) or O (5
1 TI'max) OT e

o E

| To(ag|se)

VAT (sp,a4) | | — Z 2etC
A

L maximizing this maximizes a bound on the thing we want!

Where are we at so far?

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that |mgr (as|s¢) — mo(as|s)| < e

for small enough e, this is guaranteed to improve J(6') — J(60)

Break

A more convenient bound

Claim: pg(s;) is close to pg/(s¢) when g is close to g

7o 18 close to my if |mer (as|sy) — mo(ag|ss)| < € for all s;

por(st) — po(se)| < 2et

1
a more convenient bound: |me(asst) — mo(as|s:)| < \/§DKL(7T6V(at\St)HWQ(at!St))

= Dxr(mg (ag|sy)||me(as|s:)) bounds state marginal difference

o]

Dxr(p1(z)||p2(2)) = Eznp, (2) llog

KL divergence has some very convenient properties that make it much easier to approximate!

How do we optimize the objective?

St)

0 Earpy(on) | Earomafaton) | o215t g
arg%@x; st~pg t)[¢~ (ag|se) |:7T9(at’ Y (Styat)
such that Dgr,(mg (as|s:)||me(ag|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)

How do we enforce the constraint?

o (at|st)

) s o)

atlst

/
0 <—argmgz}x Estwpe(st) [a;~mo(at|st) [
t
<€

such that Dkr, (mg (a¢|st)||me(az|st))

e (at ’St)

TTar\a+|S
=" Eapio [Eamwsg[o(axlst) tA”@(st,aa”—A(DKL(wmaast)Hvrecat\sm—e)
t

1. Maximize L£(6', \) with respect to 6’ < can do this incompletely (for a few grad steps)
2. A+ A+ a(Dky (7o (agse)||mo(as]st)) — €)

Intuition: raise A if constraint violated too much, else lower it

an instance of dual gradient descent (more on this later!)

How (else) do we optimize the objective?

A(9))

A
| 1

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that Dgp (mgr(as|s:)||ma(ar|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)

4 0" < arg max VoA0) (6" —0)

such that Dgr(mgr (a¢|st)||me(az]st)) < e

> Use first order Taylor approximation for objective (a.k.a., linearization)

How do we optimize the objective?

t

atlst

0’ <—argmax Estmpg(st)[a,~mo(az|st) [o (arlst) tAWQ(St,at)“
<e€

such that Dgp, (mgr (a¢|se)||ma(as|st))

0 — arg max VoA0)1 (6 —0)

such that Dkry (mg (a¢|s)||me(ass:)) < e

T AW) = 3 Bupin) [Eaross

o (Ag|St)
e (at\st)

(see policy gradient lecture for derivation)

= Z Es,~po(s:)
t

- Z EStNPG(St) |
t

Eat’vﬂ'a(aﬂst)

_Eat ~Tg (at |St)

| o (aN&;)

as|st)

:fytVQ log 7o (a¢|s:)

exactly the normal policy gradient!

AT (s¢,a)]]

V'V log mor (a|sy) A™ (s, a’f)”

vtVQ log mg(a¢|s¢) A™ (s, at)}]

= Vo J(6)

Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

0 < 9-|-OéV9J(9) W@(at|5t)

some parameters change probabilities a lot more than others!

Claim: gradient ascent does this:

0« arg max Vo (0)' (6" —0)

o — 9+\/ ___VyJ(6)
such that [|§ — 0'|? < e Ve J(6)]]

Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

not the same!

0" < arg max VoJ(0)1 (0 —0)

such that [|§ — 0'||? < e
second order Taylor expansion

e

1
Dy, (7o ||79) = 5(6” — H)TF(H’ —0) F = FE,, [Vglogmg(al|s)Vylog mg(a|s)T]

Fisher-information matrix can estimate with samples

Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

1
D (o ||mo) = 5 (6" = 0)"F (6" — 6)

0 =0+ aF 'VyJ(6) \

2€
“= \/ Vo (0)TFV 4.7 (6)

natural gradient

s this even a problem in practice?

’5:/\%
k . (a)*Vanilla’ policy gradlents
o
g
2 2 =
r(s¢,a;) = —s; — a; 3
o
| 1 L 2 & 0.(a
og mo(arlst) = _ﬁ(St — a¢)” + const (k,0) ™22 -15 -10 ~05 00
Controller gain 6=
(image from Peters & Schaal 2008)
(a)‘Vanilla’ policy gradients (b) Natural policy gradlents
b 0.5p7577% Essentially the same problem as this:
=3 04 = al . . .
= 3 B ozl - 2.0 " T e eessesssaT
S 0 2 S e S e
"g 0‘2 "g //’ ’,‘/—' ————————— \::\\\:\\\\\ Z
B 0l B § 0 < > NS
0.0 - 0.0L Ny S N s I ;
T2 -15 -10 -05 00™ -2 -15 -10 —0.5 00 efmans T R o i
Controller gain 6,=k Controller gain 6,=k |
—10 0 10

(figure from Peters & Schaal 2008)

Practical methods and notes

* Natural policy gradient 0 =0+ aF~'VyJ(0)
e Generally a good choice to stabilize policy gradient training

* See this paper for details:
» Peters, Schaal. Reinforcement learning of motor skills with policy gradients.

* Practical implementation: requires efficient Fisher-vector products, a bit
non-trivial to do without computing the full matrix

e See: Schulman et al. Trust region policy optimization

2
* Trust region policy optimization &= \/vgj(e) 6

TEVyJ(6)
* Just use the IS objective directly
* Use regularization to stay close to old policy
* See: Proximal policy optimization

Review

* Policy gradient = policy iteration

* Optimize advantage under new policy state AT (x4,)
distribution]
fit a model to
* Using old policy state distribution optimizes a ‘ :
bound, if the policies are close enough
generate
* Results in constrained optimization problem samples (i.e.
.) run the policy)
* First order approximation to objective = gradient

ascent

; TR e
. . policy
* Regular gradient ascent has the wrong constraint,

use natural gradient 6« 0+ aVyJ(0)

* Practical algorithms
* Natural policy gradient
* Trust region policy optimization

