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Part I

Exercises





Exercises 1

Model Building and Linearization

1.1 Many everyday situations may be described and analyzed using concepts from
automatic control. Analyze the scenarios below and try to give a description that
captures the relevant properties of the system:

• What should be controlled?
• What control signals are used?
• What measurement signals are available?
• Is the system affected by any disturbances?
• Is feedback or feedforward used for control?
• Draw a block diagram that describes the system. The block diagram should

show how the measurement signals, control signals, and the disturbances are
connected to the human (which here is the controller), and to the process.

a. You take a shower and try to get desired temperature and flow of the water.

b. You drive a car.

c. You boil potatoes on the stove.

1.2 A car drives on a flat road and we assume that friction and air resistance are
negligible. We want to study how the car is affected by the gas pedal position u.
We assume that u varies between 0 and 1, and that the acceleration of the car is
proportional to the gas pedal position, a = ku.

Car
u y

a. Write down the differential equation that describes the relation between the gas
pedal position u and the velocity v of the car.

b. Let instead the position p of the car be the output signal, y = p. Introduce the
states x1 = v and x2 = p, and write the system on state-space form.

c. Assume that the car is affected by air resistance that gives a counter force that is
proportional to the square of the velocity of the car. With the gas pedal position as
control signal and the velocity of the car as measurement signal, the system may
now be written as

ẋ = −mx2 + ku
y = x

The system is no longer linear (why?). Let k = 1 and m = 0.001. Find the
stationary velocity y0 that corresponds to the gas pedal being 10% down, u0 = 0.1.

d. Linearize the system around the stationary point in c.
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Exercises 1. Model Building and Linearization

1.3

m
f (t)

y(t)

c

k
In the right figure, a mass m is attached
to a wall with a spring and a damper.
The spring has a spring constant k and
the damper has a damping constant c.
It is assumed that k > c2/4m. An ex-
ternal force f is acting on the mass. We
denote the translation of the mass from
its equilibrium position by y. Further, we let f (t) be the input signal and y(t) be
the output signal. The force equation gives

mÿ = −ky− cẏ+ f
Introduce the states x1 = y and x2 = ẏ and write down the state space represen-
tation of the system.

1.4

L

Ri

Cvin vout

In the RLC circuit to the right, the in-
put and output voltages are given by
vin(t) and vout(t), respectively. By means
of Kirchhoff’s voltage law we see that

vin − Ri− vout − L di
dt
= 0

For the capacitor, we additionally have

Cv̇out = i

Introduce the states x1 = vout and x2 = v̇out and give the state space representation
of the system.

1.5

qin

qout

h

A cylindrical water tank with cross section
A has an inflow qin and an outflow qut. The
outlet area is a. Under the assumption that
the outlet area is small in comparison to
the cross section of the tank, Torricelli’s law
vout =

√
2�h is valid and gives the outflow

rate.

a. What would be a suitable state variable for
this system? Determine a differential equa-
tion, which tells how the state variable de-
pends on the inflow qin.

b. Asume that measurement signal y is given by level h. Give a state-space repre-
sentation of the system.

c. Let the inflow be constant, qin = q0
in. Determine the corresponding constant tank

level h0 and outflow q0
ut. Linearize the system around this stationary point.

1.6 Give the state space representation of the system
...y + 3ÿ+ 2ẏ+ y = u

where u(t) and y(t) are the input and output, respectively. Choose states x1 = y,
x2 = ẏ and x3 = ÿ.

1.7 A process with output y(t) and input u(t) is described by the differential equation

ÿ+
√

y+ yẏ = u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representation of the
system.
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Exercises 1. Model Building and Linearization

b. Find all stationary points (x0
1, x0

2, u0) of the system.

c. Linearize the system around the stationary point corresponding to u0 = 1.

1.8 Linearize the system

ẋ1 = x2
1 x2 +

√
2 sin u ( = f1(x1, x2, u))

ẋ2 = x1 x2
2 +

√
2 cos u ( = f2(x1, x2, u))

y = arctan x2

x1
+ 2u2 ( = �(x1, x2, u))

around the stationary point u0 =π/4.

1.9 A simple model of a satellite, orbiting the earth, is given by the differential equation

r̈(t) = r(t)ω2 −
β

r2(t)
+ u(t)

where r is the satellite’s distance to the earth and ω is its angular acceleration,
see Figure 1.1. The satellite has an engine, which can exert a radial force u.

r(t)

u(t)

Figure 1.1 Satellite orbiting the earth.

a. Introduce the state vector
x(t) =

r(t)
ṙ(t)


and write down the nonlinear state space equations for the system.

b. Linearize the state space equations around the stationary point(
r, ṙ, u

)
=

(
r0, 0, 0

)
Consider r as the output and give the state space representation of the linear
system. Express r0 in β and ω.
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Exercises 2

Dynamical Systems

2.1 A dynamical system may be described in various ways – with a transfer function,
with a differential equation, and with a system of differential equations on state-
space form. In this problem we transfer between the different representations
for four examples of dynamical systems, from biology, mechanics, electronics, and
economics.

a. A model for bacterial growth in a bioreactor is given by

ẋ =
10 1
−1 −1

 x+
0

1

 u

y =
1 0

 x

where u is the inflow of glucose to the reactor, and y is the bio mass. Determine
the transfer function from u to y, and a differential equation that determines the
relation between the input and output signals of the system.

b. A simple model of a telescope is given by

J d2 y
dt2 + D dy

dt
= u

where yis the angle of the telescope to the earth surface, and u is the torque from
the motor that controls the telescope. Determine the transfer function from u to y
and write the system on state-space form.

c. An electronic low pass filter is used at recordings to attenuate high frequency
noise. The input u is the original noisy signal, and the output y is the recorded
signal. The filter is given on state-space form as

dx
dt
= −

1
k

x+ 1
k

u

y = x

Determine the transfer function from u to y.

d. The transfer function for a model that describes economical growth is given by

G(s) = γ
s3 +αs2 + βs

where the input u is the difference between savings and investments in the econ-
omy, and the output y is GDP. Write the system on state-space form.

2.2 Determine the transfer functions and give differential equations, describing the
relation between input and output for the following systems, respectively.

a.

ẋ =
−2 0

0 −3

 x+
5

2

 u

y =
−1 1

 x+ 2u
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Exercises 2. Dynamical Systems

b.

ẋ =
 −7 2
−15 4

 x+
3

8

 u

y =
−2 1

 x

c.

ẋ =
−1 0

0 −4

 x+
3

2

 u

y =
1 0

 x+ 5u

d.

ẋ =
 1 4
−2 −3

 x+
−1

1

 u

y =
1 2

 x+ 3u

2.3 Determine the impulse and step responses of the systems in assignment 2.2.

2.4 Derive the formula G(s) = C(sI − A)−1 B+ D for a general system

ẋ = Ax+ Bu
y = Cx+ Du2.5 Consider the system

G(s) = 1
s2 + 4s+ 3

a. Calculate the poles and zeros of the system. Is the system stable?

b. What is the static gain of the system?

c. Calculate the initial value and final value of the step response of the system.

d. Calculate the initial value and final value of the impulse response of the system.

e. Calculate the initial derivative of the step response of the system.

2.6 Consider the system
G(s) = 0.25

s2 + 0.6s+ 0.25

a. Calculate the poles and zeros of the system.

b. What is the static gain of the system?

c. Calculate and sketch the step response of the system.

2.7 Determine the transfer function and poles of the oscillating mass in assignment 1.3.
Explain how the poles move if one changes k and c, respectively. Can the poles
end up in the right half plane?

2.8 Determine the transfer function of

a. the RLC circuit in assignment 1.4,

b. the linearized tank in assignment 1.5.
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Exercises 2. Dynamical Systems

2.9 Consider the linear time invariant system

dx
dt
=

0 −1
1 0

 x+
1

0

 u

y =
1 −1

 x

a. Is the system asymptotically stable?

b. Is the system stable?

2.10 Does the transfer function

G(s) = s+ 4
s3 + 2s2 + 3s+ 7

have any poles in the right half plane?

2.11 Determine which five of the following transfer functions correspond to the step
responses A–E below.

G1(s) =
0.1

s+ 0.1
G2(s) =

4
s2 + 2s+ 4

G3(s) =
0.5

s2 − 0.1s+ 2
G4(s) =

−0.5
s2 + 0.1s+ 2

G5(s) =
1

s+ 1
G6(s) =

4
s2 + 0.8s+ 4

G7(s) =
2

s2 + s+ 3

0 1 5 10
0

1
A

t

y(t)

0 1 5 10
0

1
B

t

y(t)

0 1 5 10
0

1
C

t

y(t)

0 1 5 10
0

1
D

t

y(t)

0 1 5 10
0

1
E

t

y(t)
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Exercises 2. Dynamical Systems

2.12 Pair each of the four pole-zero plots with the corresponding step responses A–G.

−3 −2 −1 1

−1

1
1.

−3 −2 −1 1

−1

1
2.

−3 −2 −1 1

−1

1
3.

−3 −2 −1 1

−1

1
4.

0 1 5 10
0

1
A

t

y(t)

1 5 10

1
B

t

y(t)

0 1 5 10
0

1
C

t

y(t)

0 1 5 10
0

1
D

t

y(t)

0 1 5 10
0

1
E

t

y(t)

1 5 10

1
F

t

y(t)

1 5 10

1
G

t

y(t)

2.13 Glycemic index (GI) is a measure of how fast carbohydrates in food are processed
by the body. To obtain the glycemic index, the system below is studied, where G(s)
is different for different types of carbohydrates.
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Exercises 2. Dynamical Systems

G(s)Food intake Glucose level

a. The figure below shows the impulse response from food intake to glucose level for
two types of food: whole grain pasta with low GI (solid line) and lemonade with
high GI (dashed line). Which of the following transfer functions may be used to
model the uptake of whole grain pasta and lemonade, respectively?

G1(s) =
1

s+ 1
G2(s) =

1
s/3+ 1

G3(s) =
1

(s+ 1)2
G4(s) =

1
(s/3+ 1)2

G5(s) =
1

s(s+ 1)
G6(s) =

1
s(s/3+ 1)

0 1 2 3 4 5 6
0

0.5

1.0

t [h]

B
lo

od
G

lu
co

se Wholemeal Pasta
Lemonade

b. Why is it more relevant to look at the impulse response rather than the step
response for this application?

2.14 Determine the transfer function from U to Y for the systems below.

a.

G1

G2

∑U Y

b.

G2

H2

∑
G1

H1

U
Y

c.
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Exercises 2. Dynamical Systems

G1

G3

∑
G2

∑

U
Y

d.

G1
∑ ∑

G2

−H2

−H1

U Y

2.15 The block diagram in Figure 2.1 describes temperature control in a room. The
measurement signal y is the temperature in the room. The control signal u is
the power of the radiators. The reference value r is the desired temperature. A
controller GR(s) controls the power of the radiators based on the difference of the
desired and measured temperature, e. The temperature of the room is also affected
by the outdoor temperature, which may be seen as a disturbance, d.

GR(s)
∑

GP(s)

−1

∑R(s) E(s) U(s)

D(s)

Y (s)

Figure 2.1

a. Determine the transfer function from R(s) to Y (s).

b. Determine the transfer function from D(s) to Y (s).

c. Determine the transfer function from R(s) to E(s).

d. Determine the transfer function from D(s) to U(s).

2.16 Consider the transfer function

G(s) = s2 + 6s+ 7
s2 + 5s+ 6

Write the system on

a. diagonal form,

b. controllable canonical form,

c. observable canonical form.

15



Exercises 3

Frequency Analysis

3.1 Assume that the system

G(s) = 0.01(1+ 10s)
(1+ s)(1+ 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown below. Determine the output y(t) by using
the Bode plot instead.

10−3

10−2

10−1

M
ag

ni
tu

de

10−3 10−2 10−1 100 101 102 103

−90

−45

0

45

Frequency

Ph
as

e

3.2 We analyze the two systems in Figure 3.1; the sea water in Öresund and the water
in a small garden pool. The input signal to the systems is the air temperature and
the output is the water temperature.

a. Figure 3.2 shows two Bode diagrams. Which diagram corresponds to which system?

b. We assume that the air temperature has sinusoidal variations with a period time
T = 1 year. The greatest temperature in the summer is 19○C and the lowest
temperature in the winter is −5○C. What is the difference between the greatest
and lowest sea water temperature over the year? Use the Bode diagram.

c. During a summer day we assume that the air temperature has sinusoidal varia-
tions with a period time T = 1 day. The greatest temperature of the day (at 13.00)
is 27○C, and the lowest temperature (at 01.00) is 14○C. At what time during the
day is the water in the garden pool the warmest?
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Exercises 3. Frequency Analysis

G1(s)

G2(s)

Air
temperature

Water
temperature

Air
temperature

Water
temperature

Figure 3.1

10−4

10−3

10−2

10−1

100

pG
(iω
p

10−5 10−4 10−3 10−2 10−1 100 101

−90

−45

0

ω[rad/h]

ar
g(

G
(iω
))

Figure 3.2 Bode diagram in problem 3.2.

3.3 Assume that the oscillating mass in assignment 1.3 has m = 0.1 kg, c =
0.05 Ns/cm and k = 0.1 N/cm. The transfer function is then given by

G(s) = 10
s2 + 0.5s+ 1

a. Let the mass be subject to the force f = sinωt, −∞ < t < ∞. Calculate the output
for ω = 0.2, 1 and 30 rad/s.

b. Instead, use the Bode plot of the system in Figure 3.3 to determine the output for
ω = 0.2, 1 and 30 rad/s.

3.4 Draw the Bode plots corresponding to the following transfer functions
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10−3

10−2

10−1

100

101

M
ag

ni
tu

de

10−2 10−1 100 101 102

−180

−135

−90

−45

0

Frequency

Ph
as

e

Figure 3.3 The Bode plot of the oscillating mass in assignment 3.3.

a.
G(s) = 3

1+ s/10

b.
G(s) = 10

(1+ 10s)(1+ s)

c.
G(s) = e−s

1+ s

d.
G(s) = 1+ s

s(1+ s/10)

e.
G(s) = 2(1+ 5s)

s(1+ 0.2s+ 0.25s2)

3.5 Exploit the results from the previous assignment in order to draw the Nyquist
curves of

a.
G(s) = 3

1+ s/10

b.
G(s) = 10

(1+ 10s)(1+ s)

c.
G(s) = e−s

1+ s

3.6 The Bode plot below was obtained by means of frequency response experiments,
in order to analyze the dynamics of a stable system. What is the transfer function
of the system?
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10−4

10−3

10−2

10−1

100

G
ai

n

10−2 10−1 100 101 102 103 104

−90

−45

0

Frequency

Ph
as

e

3.7 Measurements resulting in the Bode plot below have been conducted in order to
analyze the dynamics of an unknown system. Use the Bode plot to determine the
transfer function of the system.

10−2

10−1

100

M
ag

ni
tu

de

10−1 100 101 102 103

−270

−180

−90

0

90

2 5 2 5 2 5 2 5

Frequency

Ph
as

e
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Exercises 4

Feedback Systems

4.1 Assume that the air temperature y inside an oven is described by the differential
equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the temperature of the heating element.

a. Let u be the input and y the output and determine the transfer function GP(s) of
the oven.

b. The oven is to be controlled by a P controller, GR(s) = K , according to the block
diagram below. Write down the transfer function of the closed loop system.

GR GP

−1

∑r e u y

c. Choose K such that the closed loop system obtains the characteristic polynomial

s+ 0.1

4.2 The below figure shows a block diagram of a hydraulic servo system in an auto-
mated lathe.

GR
∑

GP

−1

∑r e u

f

y

The measurement signal y(t) represents the position of the tool head. The reference
tool position is r(t), and the shear force is denoted f (t). GR is the transfer function
of the position sensor and signal amplifier, while GP represents the dynamics of
the tool mount and hydraulic piston

GP(s) =
1

ms2 + ds

where m is the mass of the piston and tool mount, and d is the viscous damping
of the tool mount. In the assignment it is assumed that r(t) = 0.

a. How large does the deviation e(t) = r(t)−y(t) between the reference- and measured
tool head position become in stationarity if the shear force f (t) is a unit step? The
controller is assumed to have a constant gain GR(s) = K .
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Exercises 4. Feedback Systems

b. How is this error changed if the amplifier is replaced by a PI controller with
transfer function GR(s) = K1 + K2/s?

4.3 A process is controlled by a P controller according to the figure below. It is assumed
that r = 0.

GR GP
∑

−1

∑r u

n

y

a. Measurements of the process output indicate a disturbance n. Calculate the trans-
fer functions from n to y and n to u.

b. Let GP(s) = 1
s+1 and assume that the disturbance consists of a sinusoid n(t) =

A sinωt. What will u and y become, after the decay of transients?

c. Assume that K = 1 and A = 1 in the previous sub-assignment. Calculate the
amplitude of oscillation in u and y for the cases ω = 0.1 and 10 rad/s, respectively.

4.4 The below figure shows a block diagram of a gyro stabilized platform. It is con-
trolled by an motor which exerts a momentum on the platform. The angular
position of the platform is sensed by a gyroscope, which outputs a signal pro-
portional to the platform’s deviation from the reference value. The measurement
signal is amplified by an amplifier with transfer function GR.

GR(s) K
∑ 1

Js2

−1

∑θref

M

θ

It is desired that step changes in the reference θref or the disturbance momentum
M on the platform do not result in persisting angular errors. Give the form of
the transfer function GR, which guarantees that the above criteria hold. Hint:
Postulate GR(s) = Q(s)/P(s)

4.5 When heating a thermal bath, one can assume that the temperature increases
linearly with 1○C/s. The temperature is measured by means of a thermocouple
with transfer function

G(s) = 1
1+ sT

with time constant T = 10 s.
After some initial oscillations, a stationary state, in the sense that the temperature
measurement increases with constant rate, is reached. At a time instant, the
temperature measurement reads 102.6○C. Calculate the actual temperature of the
bath.
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Exercises 4. Feedback Systems

4.6 Consider the system G0(s) with the following asymptotic gain curve. Assume that
the system lacks delays and right half plane zeros.

ω = 1 ω = 5

pG0p = 1

log pG0p

logω

slope −2

slope −1

Further assume that the system is subject to negative feedback and that the closed
loop system is stable. Which of the following setpoints can be tracked by the closed
loop system, without a stationary error?
Assume r(t) = 0 for t < 0, and that the constants a, b and c ,= 0.

a. r(t) = a

b. r(t) = bt

c. r(t) = ct2

d. r(t) = a+ bt

e. r(t) = sin(t)

4.7 In a simple control circuit, the process and controller are given by GP(s) =
1

(s+ 1)3
and GR(s) = 6.5, respectively.

a. Determine the sensitivity function S(s).
The gain plot of the sensitivity function is given below.

10−1 100 101
10−1

100

101

2 5 2 5

Frequency[rad/s]

M
ag

ni
tu

de

b. How much are low-frequency load disturbances damped by the control circuit in
closed loop, as compared to open loop?

c. At which angular frequency does the control circuit exhibit the largest sensitivity
towards disturbances and by how much are disturbances amplified at most?
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Exercises 4. Feedback Systems

4.8 The below figure shows the gain curves of the sensitivity function S and comple-
mentary sensitivity function T for a normal control circuit.

10−3

10−2

10−1

100

G
ai

n

10−2 10−1 100 101

10−1

100

2 5 2 5 2 5

Frequency[rad/s]

G
ai

n

a. Determine which curve corresponds to the sensitivity function and complementary
sensitivity function, respectively.

b. Give the frequency range where disturbances are amplified by the feedback loop,
and the frequency range where they are damped by the feedback loop. What is the
maximum gain of disturbance amplification?

c. Give the frequency ranges where the output exhibits good tracking of the reference
signal.

d. What is the minimal distance between the Nyquist curve of the open loop system
and the point −1 in the complex plane? What does this say about the gain margin?

4.9 In a simple control loop, the open loop transfer function is given by

Go(s) = GR(s)GP(s) =
K

s(s+ 2)

Draw the root locus of the characteristic equation of the closed loop system, with
respect to the gain parameter K .

4.10 A simple control loop has the open loop transfer function

Go(s) = GR(s)GP(s) =
K(s+ 10)(s+ 11)

s(s+ 1)(s+ 2)

a. minor tick outside major Which values of K yield a stable closed loop system?

b. Sketch the characteristics of the root locus.

4.11 The figure below shows the block diagram of a printer.

a. Which values of the gain K yield an asymptotically stable system?
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Exercises 4. Feedback Systems

b. The goal is to track a reference which increases linearly with rate 0.1 V/s, and
guarantee a stationary error of less than 5 mV. Can this be achieved by adequate
tuning of the gain K?

K
s+ 2

1
s(s+ 1)

−1

∑r y

4.12 Consider the Nyquist curves in Figure 4.1. Assume that the corresponding systems
are controlled by the P controller

u = K(r− y)

In all cases the open loop systems lack poles in the right half plane. Which values
of K yield a stable closed loop system?

−2 −1 1

−3

−2

−1

a)

Re

Im

−2 −1 1

−3

−2

−1

b)

Re

Im

−2 −1 1

−3

−2

−1

c)

Re

Im

−2 −1 1

−3

−2

−1

d)

Re

Im

Figure 4.1 Nyquist curves in assignment 4.12.

4.13 The transfer function of a process is given by

Gp(s) =
1

(s+ 1)3

The loop is closed through proportional feedback

u = K(r− y)

Use the Nyquist criterion to find the critical value of the gain K (i.e. the value for
which the system transits from stability to instability).

4.14 The Nyquist curve of a system is given in Figure 4.2. The system is stable, i.e.
lacks poles in the right half plane.
Assume that the system is subject to proportional feedback

u = K(r− y)

Which values of the gain K result in a stable closed loop system?
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Figure 4.2 Nyquist curve of the system in assignment 4.14.

4.15 In order to obtain constant product quality in a cement kiln, it is crucial that the
burn zone temperature is held constant. This is achieved by measuring the burn
zone temperature and controlling the fuel flow with a proportional controller. A
block diagram of the system is shown below.

GR GP

−1

∑
reference temp. fuel flow

burn zone temp.

Find the maximal value of the controller gain K , such that the closed loop system
remains stable? The transfer function from fuel flow to burn zone temperature is
given by

GP(s) =
e−9s

(1+ 20s)2

4.16 In a distillation column, the transfer function from supplied energy to liquid phase
concentration of a volatile component is

GP(s) =
e−sL

1+ 10s

where time is measured in minutes. The process is controlled by a PI controller
with transfer function

GR(s) = 10
(

1+ 1
2s

)
What is the maximal permitted transportation delay L, yielding at least a 10○
phase margin?

4.17 A process with transfer function GP(s) is subject to feedback according to Fig-
ure 4.3.
All poles of GP(s) lie in the left half plane and the Nyquist curve of GP is shown in
Figure 4.4. It is assumed that GP(iω) does not cross the real axis at other points
than shown in the figure.
Which of the below alternatives are true? Motivate!

a. The gain margin Am < 2 for K = 1.

b. The phase margin φm < 45○ for K = 1.

c. The phase margin decreases with decreasing gain K .
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Figure 4.3 The closed loop system in assignment 4.17.
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Figure 4.4 Nyquist curve of the process GP(s) in assignment 4.17.

d. For K = 2 the closed loop system becomes unstable.

4.18 The Bode plot of the open loop transfer function, Go = GRGP , is shown in Fig-
ure 4.5. Assume that the system is subject to negative feedback.

a. How much can the the gain of the controller or process be increased without
making the closed loop system unstable?

b. How much additional negative phase shift can be introduced at the cross-over
frequency without making the closed loop system unstable?

4.19 A Bode plot of the open loop transfer function of the controlled lower tank in
the double tank process is shown in Figure 4.6. What is the delay margin of the
system?
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Figure 4.5 Bode plot of the open loop system in Figure 4.18.

Figure 4.6 Bode plot of the open loop transfer function of the controlled lower tank in the
double tank process in problem 4.19.
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Exercises 5

State Feedback and Kalman Filtering

5.1 A linear system is described by the matrices

A =
−1 1

0 −2

 B =
β

1

 C =
0 γ

 D = 0

a. For which values of β is the system controllable?

b. For which values of γ is the system observable?

5.2 A linear system is described by the matrices

A =
−2 0

1 0

 B =
 4
−2

 C =
−1 1


Find the set of controllable states.

5.3 Consider the system
dx
dt
=

−2 −1
1 0

 x+
1

2

 u

y =
1 1

 x

Is it observable? If not, find the set of unobservable states.

5.4 Consider the system

dx
dt
=

−1 0
0 −2

 x+
1

0

 u, x(0) =
1

1


Which of the states

(
3 0.5

)T ,
(
5 5

)T ,
(
0 0

)T ,
(
10 0.1

)T or
(
1 −0.5

)T can be
reached in finite time?

5.5 Consider the following system:

dx
dt
=

−2 3
1 −4

 x+
1

2

 u

y =
3 7

 x

Is it controllable?

5.6 A dynamic system is described by the state space model below

ẋ =
−2 2

0 −3

 x+
5

0

 u

y =
1 0

 x

a. Is the system controllable? Which states can be reached in finite time from the
initial state x(0) =

(
0 0

)T?
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b. Calculate the transfer function of the system.

c. Can the same input-output relation be described with fewer states? Write down
such a representation, if possible.

5.7 A linear dynamical system with transfer function G(s) is given. The system is
controllable. Which of the following statements are unquestionably true?

a. The poles of the closed loop system’s transfer function can be arbitrarily placed by
means of feedback from all states.

b. The zeros of the closed loop system’s transfer function can be arbitrarily placed by
means of feedback from all states.

c. If the state variables are not available for measurements, they can always be
estimated by diffrentiating the system output.

d. If the state vector is estimated by a Kalman filter

˙̂x = Ax̂+ Bu+ L(y− Cx̂)

one can obtain an arbitrarily fast convergence of the estimate x̂ towards the actual
state vector x, by choice of the matrix L.

5.8 Determine a control law u = krr− K x for the system

dx
dt
=

−1 0
0 −2

 x+
1

2

 u

y =
1 1

 x

such that the poles of the closed loop system are placed in −4 and the stationary
gain is 1.

5.9 The position of a hard drive head is described by the state space model

dx
dt
=

−0.5 0
1 0

 x+
3

0

 u

y =
0 1

 x

a. Determine a state feedback
u = −K x+ krr

which places the poles of the closed loop system in s = −4±4i and results in static
gain 1 from reference to output.

b. Determine a Kalman filter

dx̂
dt
= Ax̂+ Bu+ L(y− Cx̂)

for the system. Briefly motivate necessary design choices.

5.10 Figure 5.1 shows the lunar lander LEM of the Apollo project. We will study a
possible system for controlling its horizontal movement above the moon surface.
Assume that the lander floats some distance above the moon surface by means
of the rocket engine. If the angle of attack (the angle of the craft in relation to
the normal of the moon surface) is nonzero, a horizontal force component appears,
yielding an acceleration along the moon surface.
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θ

z

direction of movement

attitude rockets

Figure 5.1 The lunar lander in assignment 5.10.

∑
K1 1/s 1/s K2 1/s 1/sr

feedback

u θ̈ θ̇

x1

θ z̈

x2

ż

x3

z

Figure 5.2 Block diagram of the lander dynamics along the z-axis.

Study the block diagram in Figure 5.2 showing the relation between the control
signal u of the rocket engine, the angle of attack, θ , and the position z.
The craft obeys Newton’s law of motion in both the θ and z directions. The transfer
function from the astronaut’s control signal u to the position z is

Gz(s) =
l1l2

s4

and it is quite impossible to manually maneuver the craft. To facilitate the as-
tronaut’s maneuvering task, we alter the craft dynamics by introducing internal
feedback loops. This means that the astronaut’s control lever is not directly con-
nected to the motors, but works as a joystick that decides the desired velocity of
the craft.
A controller should then convert the movement of the control lever to a control
signal to the steer rockets. We are in possession the following measurement signals:

• The time derivative of the attack angle, θ̇ , measured by a rate gyro.
• The acceleration in the z direction, z̈, measured by accelerometers mounted

on a gyro-stabilized platform.
• The speed in the z direction, ż, measured by Doppler radar.

a. Introduce the states

x1 = θ̇
x2 = z̈
x3 = ż

and write the system on state-space form. Let the velocity in the z direction be
the output signal of the system.

b. Determine a feedback controller which utilizes the three measurements, and re-
sults in a closed-loop system with three poles in s = −0.5, and lets the control
signal of the astronaut be the speed reference in the z direction. You don’t have to
calculate the gain kr.

5.11 A conventional state feedback law does note guarantee integral action. The fol-
lowing procedure is a way of introducing integral action. Let the nominal system
be

dx
dt
= Ax+ Bu

y = Cx
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Augment the state vector with an extra component

xn+1 =

∫ t
e(s) ds =

∫ t
(r(s) − y(s)) ds

The obtained system is described by

dxe

dt
=

 A 0
−C 0

 xe +

B
0

 u+
0

1

 r

where
xe =

 x
xn+1


A state feedback law for this system results in a control law of the form

u = −K x− kn+1 xn+1 = −Ke xe

This controller, which steers y towards r, obviously has integral action. Use this
methodology in order to determine a state feedback controller with integral action
for the system

dx
dt
=

0 1
0 0

 x+
0

1

 u

y =
1 0

 x

such that the closed loop system obtains the characteristic polynomial

(s+α)
(
s2 + 2ζωs+ω2) = 0

5.12 Consider the system
dx
dt
=

−2 1
1 −2

 x+
1

2

 u

y =
0 1

 x

One wishes to estimate the state variables by means of the model

dx̂
dt
= Ax̂+ Bu+ L(y− Cx̂)

Determine L such that the poles of the Kalman filter are placed in s = −4.

5.13 Consider the dynamical system

dx
dt
=

−4 −3
1 0

 x+
1

0

 u

y =
1 3

 x

One desires a closed loop system with all poles in −4.

a. Assign feedback gains to all states such that the closed loop system obtains the
desired feature.

b. Assume that only the output y is available for measurement. In order to use state
feedback, the state x must be first be estimated by means of e.g. a Kalman filter,
yielding the estimate x̂. Subsequently, the control law u = −K x̂ can be applied.
Is it possible to determine a Kalman filter for which the estimation error decreases
according to the characteristic polynomial (s+ 6)2?

c. Is it possible to determine a Kalman filter for which the estimation error decreases
according to the characteristic polynomial (s+ 3)2?
Briefly comment the obtained results.
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Design methods

6.1 A PID controller has the transfer function

GR(s) = K
(

1+ 1
Tis

+ Tds
)

a. Determine the gain and phase shift of the controller at an arbitrary frequency ω .

b. At which frequency does the controller have its minimal gain? What is the gain
and phase shift for this frequency?

6.2 The process
G(s) = 1

(s+ 1)3

is controlled by a PID controller with K = 2, Ti = 2 and Td = 0.5. In order
to investigate the effect of changing the PID parameters, we will change K , TI
and Td by a certain factor, one at a time. We will observe how this affects both
the step response (from reference and load disturbance) and the Bode plot of the
controlled open loop system. The reference is a unit step at t = 0 whereas the load
disturbance is a negative unit step.

a. We start by studying what happens when the parameters are quadrupled, one
at a time. Figure 6.1 shows the nominal case (K, Ti, Td) = (2, 2, 0.5) (solid black
curves) together with the cases (8, 2, 0.5), (2, 8, 0.5) and (2, 2, 2). Pair the three
Bode plots and the step responses of Figure 6.1 with the three cases.

b. We now study what happens when each parameter is decreased by a factor 2. The
nominal case (K, Ti, Td) = (2, 2, 0.5) (solid curves) is shown in Figure 6.2 together
with the cases (1, 2, 0.5), (2, 1, 0.5) and (2, 2, 0.25). Pair the three Bode plots and
the three step responses in Figure 6.2 with these three cases.

6.3 The steer dynamics of a ship are approximately described by

J dr
dt
+ Dr = Cδ

where r is the yaw rate [rad/s] and δ is the rudder angle [rad]. Further, J [kgm2]
is the momentum of inertia wrt the yaw axis of the boat, D [Nms] is the damping
constant and C [Nm/rad] is a constant describing the rudder efficiency. Let the
rudder angle δ be the control signal. Give a PI controller for control of the yaw
rate, such that the closed loop system obtains the characteristic equation

s2 + 2ζωs+ω2 = 0

6.4 An electric motor can approximately be described by the differential equation

J d2θ
dt2 + D dθ

dt
= ki I

where J is the moment of inertia, D is a damping constant and ki is the current
constant of the motor. Further, θ denotes the turning angle and I the current
through the motor. Let θ be the measurement signal and I the control signal.
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Figure 6.1 Bode plot and step response for the case when the PID parameters in sub-
assignment 6.2b have been multiplied by four. The solid curves correspond to the nominal
case.

Determine the parameters of a PID controller such that the closed loop system
obtains the characteristic equation

(s+ a)(s2 + 2ζωs+ω2) = 0

Discuss how the parameters of the controller depend on the desired specifications
on a, ζ and ω .

6.5 a. Draw the Bode plot of a PI controller (let K = 1 and Ti = 1).

b. Draw the Bode plot of a PD controller (let K = 1 and Td = 15).

6.6 A cement kiln consists of a long, inclined, rotating cylinder. Sediment is supplied
into its upper end and clinkers emerge from its lower end. The cylinder is heated
from beneath by an oil burner. It is essential that the combustion zone temperature
is kept constant, in order to obtain an even product quality. This is achieved by
measuring the combustion zone temperature and controlling the fuel flow with a
PI controller. A block diagram of the system is shown in Figure 6.3.
The transfer function from fuel flow to combustion zone temperature is given by

GP(s) =
e−9s

(1+ 20s)2

and the transfer function of the controller is

GR(s) = K(1+ 1
sTi
)
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Figure 6.2 Bode plot and step response for the case when the PID parameters in sub-
assignment 6.2b have been divided by two. The solid black curves correspond to the nominal
case.

GR GP

−1

∑
reference temp. fuel flow

burn zone temp.

Figure 6.3 Block diagram of a cement kiln with temperature controller.

Use Ziegler-Nichol’s frequency method to determine the parameters of the con-
troller.

6.7 Martin has heard that the optimal effect from training is obtained when the pulse
is 160 beats per minute (bpm). By feeding back the signal from his heart rate
monitor to a treadmill, he wants to control the speed such that the pulse is exactly
at the optimal value.

a. Suppose the dynamics in Martins body can approximately be described by the
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PI
y u

Figure 6.4 Treadmill

linear system
ẋ = − 1

30
x+ 1

15
u

y = x
(6.1)

where u is the speed of the treadmill, and x is the pulse in bpm. Design a PI
controller such that both closed loop system poles are in −0.1.

b. The model in (6.1) is not available to Martin. Thus, he decides to tune his PI
controller using Ziegler-Nichols frequency method. The Bode diagram for a more
accurate model is shown in Figure 6.5. What controller parameters does Martin
obtain? Use the Bode diagram.
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Figure 6.5 Bode diagram for assignment 6.7
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6.8 Use Ziegler-Nichol’s step response and frequency method, to determine the param-
eters of a PID controller for a system with the step response and Nyquist curve
given in Figure 6.6. Also, determine a PI and a PID controller using the Lambda
method with λ = T.

2 4 6 8 10

−0.5

0

0.5

1

t

y(t)

−1 −0.5 0.5 1

−1

−0.5

ω = 1.3
Re

Im

Figure 6.6 Step response and Nyquist curve of the system in assignment 6.8.

6.9 Consider a system with the transfer function

G(s) = 1
s+ 1

e−s

a. Draw the step response of the system and use Ziegler-Nichol’s step response
method to determine the parameters of a PID controller. Write down the values of
the obtained controller parameters K , Ti and Td.

b. Use Ziegler-Nichol’s frequency method to determine the parameters of a PID
controller.

c. Use the Lambda method with λ = T to determine the parameters of a PID
controller.

6.10 A process is to be controlled by a PID controller obtained through Ziegler-Nichol’s
methods.

a. Use the step response method for the process with the black step response curve
in Figure 6.7.

b. The Nyquist curve of the same system is shown in Figure 6.8. The point marked
’o’ corresponds to the frequency ω = 0.429 rad/s. Apply the frequency method to
the process.
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Figure 6.7 Step response for the process in Problem 6.10
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Figure 6.8 Nyquist curve for the process in Problem 6.10

c. Unfortunately the step response method results in an unstable closed loop system.
The frequency method yields a stable but poorly damped system. The reason
why the step response method works so badly, is that it tries to approximate the
process with a delayed first order system (the gray step response in Figure 6.7).
By exploiting the Nyquist curve, one can obtain PID parameters yielding the solid
curve step response in Figure 6.9. The dashed and dotted curves were obtained
through the step response method.
How do you think K has changed in the third method, as compared to the Ziegler-
Nichol’s methods (increase or decrease)?

6.11 A second order system has the Bode plot shown in Figure 6.10. We would like to
connect a link GK in series with the system, in order to increase the speed of the
closed loop system. The cross-over frequency, ω c, (the angle for which pG0p = 1) is
used as a measure of the system’s speed. Which of the following GK -candidates
yield a faster system?

A GK = K, K > 1

B GK =
1

s+ 1

C GK =
s+ 1
s+ 2

D GK = e−sL, L > 0

6.12 A system has the transfer function

GP(s) =
1

s(s+ 1)(s+ 2)
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Figure 6.10 Bode plot of the system in assignment 6.11.

The system is part of a feedback loop together with a proportional controller with
gain K = 1. The control error of the resulting closed loop system exhibits the
following behavior: e(t) → 0, t → ∞ when the setpoint is a step and e(t) → 2,
t →∞ when the setpoint is a ramp.
Design a compensation link Gk(s) which together with the proportional controller
decreases the ramp error to a value less than 0.2. Also, the phase margin must
not decrease by more than 6○.

6.13 Consider a system with the following transfer function

GP(s) =
1.1

s(s+ 1)
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A proportional controller with gain K = 1 is used to close the loop. However,
the closed loop system becomes too slow. Design a compensation link, Gk(s), that
roughly doubles the speed of the closed loop system without any change in robust-
ness, i.e. the crossover frequency ω c should be doubled and the phase margin φm
should not decrease.

6.14 Consider the system
G1(s) =

1
s(s+ 1)(s+ 2)

If controlled by a proportional controller with gain K = 1, the stationary error of
the closed loop system is e = 0 for a step input (r = 1, t > 0) and e = 2 for a ramp
input (r = t, t > 0). One wants to increase the speed of the system by a factor
3, without compromising its phase margin or the ability to eliminate stationary
errors. Device a compensation link Gk(s) that fulfils the above criteria.

6.15 A servo system has the open loop transfer function

Go(s) =
2.0

s(s+ 0.5)(s+ 3)

The system is subject to simple negative feedback and has a step response accord-
ing to Figure 6.11. As seen from the figure, the system is poorly damped and has
a significant overshoot. The speed however, is satisfactory. The stationary error of
the closed loop system with a ramp input is e1 = 0.75.
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0.5
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1.5

t

y(t)

Figure 6.11 Step response of the closed loop servo system in assignment 6.15.

Design a compensation link that increases the phase margin to φm = 50○ without
affecting the speed of the system. (φm = 50○ yields a relative damping ζ ( 0.5
which corresponds to an overshoot M ( 17%.) The stationary ramp error of the
compensated system must not be greater than e1 = 1.5.

6.16 Consider a system with the open loop transfer function

G1(s) =
1.5

s(s2 + 2s+ 2)

The system is subject to simple negative feedback. The settling time (5%) is Ts =
8.0 s, the overshoot is Mo = 27%, and the stationary ramp error (r(t) = t) is
e1 = 1.33.
Device a phase lag compensation link

Gk(s) = K s+ a
s+ a/M

such that the stationary ramp error of the closed loop system is decreased to
e1 = 0.1, while speed and damping (robustness) are virtually sustained.
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Controller Structures

7.1 Figure 7.1 shows a block diagram of the temperature control system in a house.
The reference temperature (the thermostat set point) is given by r, the output y is
the indoor temperature and the disturbance d is due to the outdoor temperature.
The transfer function G1(s) represents the dynamics of the heating system and
G2(s) represents the dynamics of the air inside the house. The controller GR is a
P controller with gain K = 1.
Assume that the influence d of the outdoor temperature can be exactly measured.
Determine a feedforward link H, such that the indoor temperature becomes inde-
pendent of the outdoor temperature. What is required in order to obtain a good
result from the feedforward?

GR
∑

G1

H

∑
G2

−1

∑r e u y

d

Figure 7.1 Block diagram of the temperature control system in a house.

7.2 Figure 7.2 shows a block diagram of a level control system for a tank. The inflow
x(t) of the tank is determined by the valve position and the outflow v(t) is governed
by a pump. The cross section of the tank is A = 1 m2. The assignment is to control
the system so that the level h in the tank is held approximately constant despite
variations in the flow v. This is done by adjusting the valve at the outflow from
the buffer tank.

K

P-controller ∑
Gv

Valve

GF

Feedforward

∑
GT

−1

Tank

−1

∑href u h

v

Figure 7.2 Block diagram of the level control system in assignment 7.2.
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The transfer function of the valve from position to flow is

Gv(s) =
1

1+ 0.5s

The tank dynamics can be determined through a simple mass balance.

a. Assume that GF = 0, i.e. that we don’t have any feedforward. Design a P controller
such that the closed loop system obtains the characteristic polynomial (s + ω)2.
How large does ω become? What stationary level error is obtained after a 0.1 step
in v(t)?

b. Design a PI controller which eliminates the stationary control error otherwise
caused by load disturbances. Determine the controller parameters so that the
closed loop system obtains the characteristic polynomial (s+ω)3. How large does
ω become?

c. To further decrease the influence of load disturbances, we introduce feedforward
based on measurements of v(t). Design a feedforward controller GF that eliminates
the influence of outflow variations by making corrections to x(t).
As all variables describe deviations from the operation point, the reference value for the
level h can be set to zero.

7.3 Consider the system in Figure 7.3. The transfer function of the process is given by

GP(s) =
1

s+ 3

and GR(s) is a PI controller with transfer function

GR(s) = K(1+ 1
STi

)

K f is a constant feedforward from the reference signal r.

GR(s)

K f

∑
GP(s)

−1

∑r u y

Figure 7.3 Block diagram showing assignment 7.3.

a. Let K f = 0 and determine K and Ti such that the poles of the closed loop system
are placed in −2± 2i, which is assessed to supress disturbances well.

b. Discuss the influence of the feedforward on the system’s response to reference
changes.
The closed loop transfer function of the system has one zero. Eliminate it by
choosing an appropriate constant feedforward K f .

7.4 The system in assignment 7.3 can be described by an equivalent block diagram,
according to Figure 7.4. Write down the transfer functions Hff(s) and Hfb(s).
Discuss the result and consider the effect of the feedforward when the controller
contains a D term.
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GP(s)

Hfb

∑
Hff

r y

Figure 7.4 Equivalent block diagram in assignment 7.3.

7.5 The block diagram in Figure 7.5 shows cascade control of a tank. The transfer
function G1 describes a valve whereas the transfer function G2 describes the
dynamics of the tank. The objective is to control the tank level y. This is done by
controlling the valve G1 in an inner control loop, whereas y is controlled by an
outer control loop. Both the control loops are cascaded so that the reference of the
inner loop is the output of the controller in the outer loop. It is presumed that G1
and G2 have no poles or zeros in the origin.

∑
GR2

∑
GR1

∑
G1

∑
G2

−1

−1

yr e y1 y

v1 v2

Figure 7.5 The cascade in assignment 7.5.

There are two disturbances in the system, namely the disturbance flow v2, which
is added to the controlled flow y1 and pressure variations v1 in the flow before
the valve. Discuss the choice of controller (P or PI) in the inner and outer loop,
respectively, with respect to elimination of stationary control errors at step changes
in disturbances v1 and v2.

7.6 Consider Figure 7.5 and assume that G1(s) = 2
s+2 describes a valve whereas

G2(s) = 1
s describes a tank.

a. Determine a P controller GR1(s) = K1 such that the inner control loop becomes 5
times faster than the uncontrolled valve.

b. Design a PI controllerGR2(s) = K2(1 + 1
Tis ) for the outer loop, which gives closed

loop poles a factor 10 closer to the origin than the pole for the inner control loop.
Approximate the inner loop by Ginner(s) ( Ginner(0).

7.7 In a certain type of steam boiler, a dome is used to separate the steam from the
water (see Figure 7.6). It is essential to keep the dome level constant after load
changes. The dome can be described by the model

Y (s) = 10−3

s
M(s) + s− 0.01

s(s+ 0.1)
10−3 F(s)

where Y is the dome level [m], M is the feed water flow [kg/s] and F is the steam
flow [kg/s].

a. Assume a constant steam flow. Design a P controller, controlling the feed water
flow by measuring the dome level. Choose the controller parameters such that the
control error caused by a step in the dome level goes down to 10 % of its initial
value after 10 seconds.
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10−3 s− 0.01
s(s+ 0.1)

∑
10−3

s

Y (s)

F(s)

M(s)

Figure 7.6 Block diagram of steam boiler with dome.

b. Consider the closed loop system. Write down the stationary level error Y caused
by a step disturbance of 1 kg/s in the steam flow F.

c. Consider the initial system. Determine a feedforward link H(s) from steam flow
F(s) to feed water flow M(s), such that the level Y becomes independent of changes
in the steam flow.

7.8 Assume that a servo motor
GP(s) =

1
s(s+ 1)

is controlled by the P controller GR(s) = 2. What is the delay margin of the
system?

7.9 Consider the same process and controller as in the previous assignment. Now the
process is controlled over a very slow network which introduces a one second delay
in the control loop. In order to deal with this problem a Smith predictor is utilized,
see Figure 7.7.

a. Assume that the model and the process are identical. What are the transfer
functions for the blocks (Controller, Process, Model, Model with no delay) in our
example?

b. The block diagram of the Smith predictor can be redrawn according to Figure 7.8.
What is the transfer function of the Smith predictor (from e to u) in our example?

c. Use the approximation ex ( 1+ x in order to simplify the transfer function of the
controller. Compare the controller to compensation links.

Controller
∑

Process

Model

Model
without
delay

−1−1
∑

r u y

y1

y2

Figure 7.7 Working principle of the Smith predictor.

7.10 Figure 7.9 shows the result of a frequency analysis carried out on the beam (a
part of the ’ball on the beam’ process). One sees that the process dynamics can
be well approximated by an integrator, for low frequencies. One also sees that
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GR

ĜP − Ĝ0
P

−1

∑∑
GP

r e u y

Otto Smith Controller

Figure 7.8 Block diagram equivalent to Figure 7.7.

for high frequencies, the phase curve diverges in a way which resembles a delay.
Consequently, it would be possible to describe the process by

G(s) = k
s

e−sL

Use the Bode plot in order to determine approximate values of the gain k and
delay L.
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Figure 7.9 Measured Bode plot of the beam.
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Design Examples

8.1 Depth Control of Submarine

Purpose
This assignment deals with depth control of a submarine from the nineteen-forties.
Two control methods are tested — PD and state feedback. The latter method was
used in reality.

Background
Depth control of submarines can be achieved by means of varying the rudder angle
β according to Figure 8.1. The depth h is measured by means of a manometer. By

Figure 8.1 Depth control of the submarine in assignment 8.1.

manually generating a sinusoidal rudder angle β (by means of a table and watch
— don’t forget that this was the end of the nineteen-forties) one can use frequency
analysis to estimate the transfer function G(s) from β to h (for a constant speed
v). The resulting Bode plots for three different speeds are shown in Figure 8.2.

Specifications
In this case no specifications were given except “Make it as good as you can”.

Problem Formulation
Assume that the speed is v = 3 knots. The problem lies in computing a control law
which gives a satisfactory settling of the depth h for the given speed. This does
not guarantee equally satisfactory results at other speeds.
In an initial approach one wanted to control the depth h of the submarine, solely
based on measurements of h.

a. What is the maximal allowed gain K in order to achieve a stable closed loop system
with a P controller β = K(href − h). Use the Bode plot in Figure 8.2?

b. The desired cross-over frequency is ω c = 0.03 rad/s, using a PD controller Gr(s) =
K(1+TDs). How should K and TD be chosen in order to obtain a 60○ phase margin
φm?
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Figure 8.2 Bode plot of the estimated transfer function G(s) from β [deg] to h [m] in
assignment 8.1 for the speeds v = 3 (solid black curves), 5 (dashed curves) and 7 knots (gray
curves).

c. How is the stability of the closed loop system in (b) affected if the speed is increased
from 3 to 7 knots? Suggest different ways in which speed variations can be taken
into consideration.

For angular frequencies above 0.05 rad/s one can use the approximation
Gαβ (s) =

kv

s

2

Ghα(s) =
v
s

(8.1)

where Gαβ (s) and Ghα(s) are the transfer functions from β to α and from α to h,
respectively (see Figure 8.3). The constant kv depends on the speed v.

kv

s2

v
s

β α h

Figure 8.3 Block diagram of a submarine model which is valid for ω > 0.05 rad/s.

d. Determine kv by means of the Bode plot in Figure 8.2. (1 knot ( 1.852 km/h =
1.852/3.6 ( 0.514 m/s.)

e. Assume that the approximate model

Ghβ (s) =
kvv
s3

is under P control β = K(href − h). Determine which values of K that yield
an asymptotically stable system. Does this concur with the results obtained in
sub-assignment a?

One can improve the performance of the control system by utilizing additional
feedback from the trim angle α and its derivative dα/dt.
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f. Introduce the states x1 = dα/dt, x2 = α and x3 = h together with the input
u = β . Use the control law u = ur − k1 x1 − k2 x2 − k3 x3 = ur − K x and determine
K such that the characteristic equation of the closed loop system becomes

(s+γω0)(s2 + 2ζω0s+ω2
0) = 0

g. The reference href for the depth h is introduced according to

ur = Krhref

How should Kr be chosen in order to obtain h = href in stationarity?

It was decided to choose ζ = 0.5 and γ = 0.2 which was considered to give an
adequately damped step response. However, the choice of ω0 requires some further
thought. It should not be chosen too low, since the approximate model (8.1) is only
valid for ω > 0.05 rad/s. On the other hand, choosing ω0 too high would result in
large rudder angles caused by the large values of the coefficients l j, j = 1, 2, 3.

h. How large can ω0 be chosen if a step disturbance in the manometer signal corre-
sponding to ∆h = 0.1m should not give rise to larger rudder angles than 5○?

In the actual case ω0 = 0.1 rad/s was chosen. A semi-automatic system was
evaluated first. The signal u = ur−k1 x1−k2 x2−k3 x3 was displayed to an operator,
who manually tried to keep the signal zero by means of the ordinary rudder servo.
The control action was very satisfactory. Settling times of 30–60 s were obtained
throughout the speed range. The complete automatic system was then evaluated on
the Swedish submarine ‘Sjöborren’ (The Sea Urchin). The accuracy during cruising
in calm weather was ±0.05 m.

8.2 Control of Elastic Servo

Purpose
The aim of the assignment is to control the angular speed of a flywheel which is
connected to another flywheel by a weak axis. The second flywheel is driven by
a motor. Different control strategies are evaluated and compared with respect to
performance.

Background
Figure 8.4 shows a simplified model of an elastic servo. It could also constitute a
model of a weak robot arm or an elastic antenna system mounted on a satellite.
The turn angles of the flywheels are denoted φ1 and φ2, respectively, whereas

Motor J1 J2
u M ω1

φ1

k f

d f

ω2

φ2

d1 d2

Figure 8.4 Model of the elastic servo in assignment 8.2.

ω1 = φ̇1 and ω2 = φ̇2 denote the corresponding angular speeds. The flywheels
have moments of inertia J1 and J2, respectively. They are connected by an axle
with spring constant k f and damping constant d f . The system is subject to bearing

47



Exercises 8. Design Examples

friction, which is represented by the damping constants d1 and d2. One of the
flywheels is driven by a DC motor, which is itself driven by a current-feedback
amplifier. The motor and amplifier dynamics are neglected. The momentum of the
motor is proportional to the input voltage u of the amplifier, according to

M = km · I = kmkiu

where I is the current through the rotor coils. Momentum equilibrium about the
flywheel yields the following equations{

J1ω̇1 = −k f (φ1 −φ2) − d1ω1 − d f (ω1 −ω2) + kmkiu
J2ω̇2 = +k f (φ1 −φ2) − d2ω2 + d f (ω1 −ω2)

We introduce the state variables
x1 = ω1

x2 = ω2

x3 = φ1 −φ2

and consider the angular speed ω2 as the output, i.e.

y = kω2 ·ω2

This gives us the following state space model of the servo.

ẋ = Ax+ Bu =


−

d1 + d f

J1

d f

J1
−

k f

J1

d f

J2
−

d f + d2

J2

k f

J2

1 −1 0


x+


kmki

J1

0
0

 u

y = Cx =
0 kω2 0

 x

The following values of constants and coefficients have been measured and esti-
mated for a real lab process.

J1 = 22 · 10−6 kgm2

J2 = 65 · 10−6 kgm2

k f = 11.7 · 10−3 Nm/rad
d f = 2e−5

d1 = 1 · 10−5 Nm/rad/s
d2 = 1 · 10−5 Nm/rad/s
km = 0.1 Nm/A
ki = 0.027 A/V

kω1 = kω2 = 0.0167 V/rad/s

Problem Formulation
The input is the voltage u over the motor and we want to control the angular speed
ω2 of the outer flywheel.
It is desired to quickly be able to change ω c, while limiting the control system’s
sensitivity against load disturbances and measurement noise. The system also
requires active damping, in order to avoid an excessively oscillative settling phase.

Specifications
1. The step response of the closed loop system should be fairly well damped and

have a rise time of 0.1-0.3 s. The settling time to ±2% shall be at most 0.5 s.
A graphical specification of the step response is given in Figure 8.5.

2. Load disturbances must not give rise to any static errors.
3. Noise sensitivity should not be excessive.
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Figure 8.5 The step response of the closed loop system shall lie between the dashed lines.

Ziegler-Nichols Method
The Bode plot of the transfer function from u to ω2 is shown in Figure 8.6.
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Figure 8.6 Bode plot of the servo process.

a. Use Ziegler-Nichols frequency method in order to determine suitable PID param-
eters.
Ziegler-Nichols method often gives a rather oscillative closed loop system. However,
the obtained parameters are often a reasonable starting point for manual tuning.

State Feedback and Kalman Filtering
If it is possible to measure all states, the poles of the closed loop system can be
arbitrarily placed through the feedback control law

u(t) = −K x(t) + Kr yr(t)
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if the system is also controllable.

b. Determine the gain Kr so that the stationary gain of the closed loop system
becomes 1, i.e. y = yr in stationarity.

In order to meet specification 2, one must introduce integral action in the controller.
One way to achieve this it thorough the control law

u(t) = −K x(t) + Kr yr(t) − Ki

∫ t

−∞

(y(s) − yr(s))ds

This can be interpreted as feedback from an ’extra’ state xi according to{
ẋi = y− yr

u = −K x+ Kr yr − Ki xi

Figure 8.7 shows a block diagram of the entire system

∑
Process

−K

−1

−ki
1
s

∑

kr

yr U Y

X

E xi

Figure 8.7 Block diagram of the state feedback control system in assignment 8.2.

c. How does the augmented state space model look like? Introduce the notion xe for
the augmented state vector.
Since the states are not directly measurable, they must be reconstructed in some
way. A usual way is to introduce a Kalman filter

˙̂x = Ax̂+ Bu+ L(y− Cx̂)

and then close the loop from the estimated states x̂

u = −K x̂+ Kr yr − Ki xi

It is, however, unnecessary to estimate xi since we have direct access to this state.
The block diagram of the entire system is shown in Figure 8.8. Let K ′ denote the
augmented row matrix ( K Ki ) and call the augmented system matrices A′ and
B′, respectively. The problem consists in finding suitable K , Ki and L by placing
the eigenvalues of A′ − B′K ′ and A − LC. Since the both eigenvalue problems
are of a bit too high dimension for enjoyable hand calculations, we use Matlab to
investigate a few choices of pole placements.
In order not to end up with too many free parameters, we place the poles in a
Butterworth pattern. I.e. the poles are equally distributed on a half circle in the
left half plane. We place the eigenvalues of A′ − B′K ′ on a half circle with radius
ωm, whereas the eigenvalues of A− LC are placed on a half circle with radius ω o
(see Figure 8.9). A suitable ωm can be obtained from Specification 1, i.e. that the
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∑
Process

Model

−K

−1

−ki
1
s

∑

kr

yr U Y

X̂

E xi

Figure 8.8 Block diagram showing the Kalman filter and state feedback in assignment 8.2.
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Figure 8.9 The pole placement in assignment 8.2.

settling time Ts to reach within 2% of the stationary value must be less than 0.5 s.
A coarse estimation of Ts for a second order system with relative damping ζ and
natural frequency ω is given by

Ts ( −
lnε
ζω

where ε is the maximal deviation from the final value. Since we have a 4th degree
system, we cannot use this approximation directly. If we, however, only consider
the least damped pole pair (ζ = 0.38 and ω = ωm) in Figure 8.9 we obtain

ωm ( −
lnε
Tsζ

(8.2)

d. Which value of ωm is obtained from the formula (8.2)?
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We let ωm = 20 which yields Ts < 0.5 s. We can let Kr = 0 since we have integral
action in the controller and thus stationary closed loop gain 1. Figure 8.10 shows
the step response of the closed loop system for Kr = 0 and Kr chosen according to
sub-assignment b, respectively. By letting Kr = 0 the step response overshoot is
sufficiently decreased to fulfill the specification.
We now fix ωm and vary ω o. The following test shall be used to evaluate the control
performance. At time t = 0 there is a unit step in the reference value yr followed
by a load disturbance d = −1 in the control signal at t = 1 and the introduction
of measurement noise (in y) at t = 3. The variance of the noise is 0.01. The result
is shown in Figure 8.11.

e. Which value of ω o seems to be best when it comes to elimination of load distur-
bances? Which ω o is best when it comes to suppressing measurement noise?

Figure 8.10 Step response of the closed loop system for ωm = 20 rad/s. Choosing Kr
according to sub-assignment b yields the system with the larger overshoot. The other curve
is the step response corresponding to Kr = 0.
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Figure 8.11 Evaluation of control with ωm = 20 and ω o = 10 (solid curves), 20 (dashed
curves) and 40 (dotted curves).
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Interactive Comparison Between
Model Descriptions

There are many ways to describe the dynamics of processes and control systems,
e.g., step responses, transfer functions, state-space descriptions, pole-zero diagrams, Bode
diagrams, and Nyquist diagrams. A good way of learning the correspondence between
different descriptions is to use interactive tools. On the web page
http://aer.ual.es/ilm/

there are several interactive programs that may be downloaded for free. The module
Modeling is convenient to use to study model descriptions. The interface of this module is
shown in the figure below.

The model structure that you want to study is entered by "dragging" poles and zeros
in the pole-zero diagram. Parameters and dead time may then be changed by dragging
points or lines in the different diagrams, or by entering numerical values for the transfer
function. The best way of learning to use the tool and examine its possibilities is to try
things out by experimenting with the different menus. More information is available on
the web page.

The gradation of the axes in the different diagrams can be changed by clicking at the
small triangles by the gradations. It is also possible to zoom in and out.

Under the tab File you find the useful command “Reset data”, which resets all values
to default.
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9.1 Study the transfer function
G(s) = K

1+ sT
Let the starting poing be K = T = 1.

a. First, vary the gain K and note how the pole, step response, Nyquist diagram
and Bode diagram are affected. How can K be determined from the step response,
Nyquist diagram, and Bode diagram?

b. Set K = 1 and vary T. How are the different representations affected? Why is the
shape of the Nyquist diagram not affected?

c. Set K = T = 1 and add a dead time L such that the transfer function becomes

G(s) = K
1+ sT

e−Ls

Vary L and obseve how that affects the representations. Explain what happens
with the step response. Why does the Nyquist curve look like it does? Why is the
gain curve of the Bode diagram not affected?

9.2 Study the transfer function

G(s) = K
(1+ sT1)(1+ sT2)

Let the starting point be K = T1 = T2 = 1.

a. First, vary the gain K and note how poles, step response, Nyquist diagram, and
Bode diagram are affected.

b. Set K = 1 and vary T1 and T2. Note the difference between the cases T1 ( T2 and
T1 ≫ T2. How can G(s) be approximated in the case T1 ≫ T2?

c. Set K = T1 = T2 = 1 and add a zero, such that the transfer function becomes

G(s) = K(1+ sT3)

(1+ sT1)(1+ sT2)

Vary T3 and observe how that affects the representations. What happens when
T3 < 0? What does this mean if you want to control such a process? Try to explain
the phenomenon.

9.3 Study the transfer function

G(s) = ω2

s2 + 2ζωs+ω2

Let the starting point be ζ = 0.7 och ω = 1.

a. First, vary the frequency ω and note how poles, step response, Nyquist diagram,
and Bode diagram are affected.

b. Set ω = 1 and vary ζ . Note how the representations change.
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Solutions to Exercises





Solutions to Exercises 1

Model Building and Linearization

1.1 a. A block diagram of the system is shown in Figure S1.1. The person that takes a
shower senses the temperature and the flow (measurement signals), and adjusts
the shower handle (control signal) to get desired temperature and flow. Feedback is
primarily used. Disturbances may be variations in water pressure and temperature
in the water pipes.

Person Shower
Hot

Cold

Temp

Flow

Figure S1.1 Block diagram of person taking a shower.

b. A car driver uses several control signals: the gas pedal, the brake, the steering
wheel. The driver wants to control the car such that it keeps on the road with
desired velocity, and keeps safe distance to other vehicles. Measurement signals
are the speedometer, and visual feedback of how the car turns, the distance to the
car in front, and other road conditions. The uses feedforward, e.g., to adjust the
velocity in advance before a curve, but also feedback, by looking at the speedometer
to keep desired velocity. A block diagram of the system is shown in Figure S1.2.

Driver Car

Steering
Accelerator

Brakes
Velocity

Distance
Road Curvature
Road Conditions

Figure S1.2 Block diagram of car driving.

c. The control signal is the heat from the stove plate. Measurement signals from the
systems are obtained by observing how intensively the water boils, and sensing
how soft the potatoes are. Feedback is used, e.g., when adjusting the power of
the stove plate when the water boils too intensively. Feedforward is used when
following a given recipe, e.g., ”the potatoes are done after 20 minutes” or ”when
the water boils, decrease the heat of the stove plate to half of full power”. A block
diagram is shown in Figure S1.3.

1.2 a.

v̇ = ku

The system is linear.

b. Now, we get an additional differential equation

ṗ = v
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Stove Pot w. water
Heat

Potatoes

Person

Heat

Sight

Softness

Cooker knob

Figure S1.3 Block diagram of potato boiling.

Choosing the states as x1 = v, x2 = p, we get

ẋ1 = ku
ẋ2 = x1

y = x2

One can also write the system on matrix form

ẋ =
0 0

1 0

 x+
k

0

 u

y =
0 1

 x

c. The term mx2 makes the system nonlinear. The stationary point is given by

−0.001(x0)2 + u0 = 0

which for u0 = 0.1 gives x0 = ±10. The stationary velocity thus becomes y0 = 10
m/s.

d. The system is given by

ẋ = f (x, u) = −mx2 + ku
y = �(x, u) = x

We differentiate f and � with respect to x and u and get

� f
�x

= −2mx

� f
�u

= k

��

�x
= 1

��

�u
= 0

We insert the stationary point (x0, u0, y0) = (10, 0.1, 10) in the expressions for the
derivatives, and introduce the new variables ∆x = x− x0, ∆y = y− y0, ∆u = u−u0.
We get the linear system

d∆x
dt

= −0.02∆x+ ∆u

∆y = ∆x

1.3 With x1 = y and x2 = ẏ the system is given byẋ1
ẋ2

 =

 0 1

−
k
m

−
c
m

 x1
x2

+

 0
1
m

 f

y =
1 0

 x1
x2


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1.4 With states x1 = vout and x2 = v̇out, the system is given byẋ1
ẋ2

 =

 0 1

−
1

LC
−

R
L

 x1
x2

+

 0
1

LC

 vin

y =
1 0

 x1
x2


1.5 a. We can choose e.g. the height h as state variable. The volume change in the tank

is given by
Aḣ = qin − qut

and from Torricelli’s law we obtain qut = a
√

2�h. The sought differential equation
becomes

ḣ+ a
A

√
2�h = 1

A
qin

b.

ḣ = − a
A

√
2�h+ 1

A
qin ( = f (h, qin))

y = h ( = �(h, qin))

c. The outlflow must equal the inflow q0
ut = q0

in. The level is calculated by letting
ḣ = 0, which yields

h0 =
1

2�

(
q0

in
a

)2

We determine the partial derivatives

� f
�h

= −
a
A

√
�

2h
� f
�qin

=
1
A

��

�h
= 1 ��

�qin
= 0

By inserting h = h0 above and introducing variables which denote deviations from
the operating point: ∆h = h− h0, ∆qin = qin − q0

in, ∆y = ∆h the linearized system
is

∆̇h = − a
A

√
�

2h0 ∆h+ 1
A

∆qin

∆y = ∆h

1.6 ẋ1
ẋ2
ẋ3

 =

 0 1 0
0 0 1
−1 −2 −3


x1

x2
x3

+

0
0
1

 u

y =
1 0 0

 x1
x2
x3


1.7 a.

ẋ1 = x2

ẋ2 = −
√

x1 − x1 x2 + u2

y = x1

b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation we directly
obtain x2 = 0. Subsequently, the second equation yields √x1 = u2. Hence there
are infinitely many stationary points and they can be parametrized through t as
(x0

1, x0
2, u0) = (t4, 0, t).
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c. u0 = 1 gives the stationary point (x0
1, x0

2, u0) = (1, 0, 1). We let

f1(x1, x2, u) = x2

f2(x1, x2, u) = −
√

x1 − x1 x2 + u2

�(x1, x2, u) = x1

and compute the partial derivatives

� f1

�x1
= 0 � f1

�x2
= 1 � f1

�u
= 0

� f2

�x1
= −

1
2√x1

− x2
� f2

�x2
= −x1

� f2

�u
= 2u

��

�x1
= 1 ��

�x2
= 0 ��

�u
= 0

At the stationary point we have

� f1

�x1
= 0 � f1

�x2
= 1 � f1

�u
= 0

� f2

�x1
= −

1
2

� f2

�x2
= −1 � f2

�u
= 2

��

�x1
= 1 ��

�x2
= 0 ��

�u
= 0

After a variable substitution, the linearized system can be written∆̇x1
∆̇x2

 =

 0 1
−

1
2

−1

 ∆x1
∆x2

+

0
2

 ∆u

∆y =
1 0

 ∆x1
∆x2


1.8 At the sought operating point it holds that

0 = x2
1 x2 + 1

0 = x1 x2
2 + 1

y = arctan x2

x1
+

π2

8

which yields x0
1 = −1, x0

2 = −1 and y0 = π
4 +

π2

8 . Computation of the partial
derivatives now yields

� f1

�x1
= 2x1 x2

� f1

�x2
= x2

1
� f1

�u
=
√

2 cos u

� f2

�x1
= x2

2
� f2

�x2
= 2x1 x2

� f2

�u
= −

√
2 sin u

��

�x1
=

−x2

x2
1 + x2

2

��

�x2
=

x1

x2
1 + x2

2

��

�u
= 4u

With the variable substitution

∆u = u− π
4

∆x1 = x1 + 1
∆x2 = x2 + 1

∆y = y− π
4
−

π2

8
.
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the linearized system becomes∆̇x1
∆̇x2

 =

2 1
1 2

 ∆x1
∆x2

+

 1
−1

 ∆u

∆y =
1

2
−

1
2

 ∆x1
∆x2

+π∆u

1.9 a. The nonlinear state space equations are

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = ω2 x1 −
β
x2

1
+ u = f2(x1, x2, u)

y = x1 = �(x1, x2, u)

b. At stationarity it holds that

r̈(t) = ω2r0 −
β
r2

0
+ 0 = 0

i.e. r3
0 = β/ω2. We now compute the partial derivatives

� f1

�x1

� f1

�x2

� f1

�u
� f2

�x1

� f2

�x2

� f2

�u
��

�x1

��

�x2

��

�u


=

 0 1 0
ω2 + 2β/r3

0 0 1
1 0 0

 =

 0 1 0
3ω2 0 1

1 0 0


The linear system hence becomes

d∆x
dt

=

 0 1
3ω2 0

 ∆x+
0

1

 ∆u

∆y =
1 0

 ∆x
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Dynamical Systems

2.1 a. The transfer function for a linear system on state-space form is given by

G(s) = C(sI − A)−1 B+ D

=
1 0

(s 0
0 s

−

10 1
−1 −1

)−1 0
1


=

1
(s− 10)(s+ 1) + 1

The transfer function gives the relation

Y (s) = 1
(s− 10)(s+ 1) + 1

U(s)

which may be written as

s2Y (s) − 9sY (s) − 9Y (s) = U(s)

Inverse Laplace transform gives the differential equation

ÿ− 9ẏ− 9y = u

b. Laplace transform of the differential equation gives

Js2Y (s) + DsY (s) = U(s)

We get
Y (s) = 1

Js2 + Ds
U(s)

and thus the transfer function is

G(s) = 1
Js2 + Ds

When writing the system on state-space form, the states may be chosen as x1 = y,
x2 = ẏ. This gives the equations

ẋ1 = ẏ = x2

ẋ2 = ÿ = 1
J
(−Dẏ+ u) =

1
J
(−Dx2 + u)

The system on state-space form is given by

ẋ =
0 1

0 − D
J

 x+
0

1
J

 u

y =
1 0

 x

c. The transfer function is given by

G(s) = C(sI − A)−1 B+ D = 1(s−−1/k)−11/k = 1
1+ sk
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d. The transfer function gives the following relation between Y (s) and U(s)

(s3 +αs2 + βs)Y (s) = γU(s)

Inverse Laplace transform gives
...y +αÿ+ β ẏ = γu

Choosing the states

x1 = y
x2 = ẏ
x3 = ÿ

gives the state-space description

ẋ =

0 1 0
0 0 1
0 −β −α

 x+

0
0
γ

 u

y =
1 0 0

 x

We may also use any of the "standard forms" for state-space descriptions given in
the collection of formulae (diagonal form, observable canonical form, controllable
canonical form). To write the system on diagonal form we must factorize the
transfer function, which is hard when we don’t know the values of α and β . Thus,
the controllable or observable canonical forms are more convenient to choose. We
compare the coefficients in our transfer function to the structure in the collection
of formulae and get

a1 = α, a2 = β, a3 = 0, b1 = 0, b2 = 0, b3 = γ

A state-space description on observable canonical form is thus given by

ẋ =

−α 1 0
−β 0 1
0 0 0

 x+

0
0
γ

 u

y =
1 0 0

 x

The model is presented and analyzed in the paper Complex dynamics in low-
dimensional continuous-time business cycle models: the Sil’nikov case, H.W. Lorenz,
System Dynamics Review, vol.8 no.3, 1992.

2.2 a. The transfer function is

G(s) = C(sI − A)−1 B+ D

=
(
−1 1

) (s+ 2 0
0 s+ 3

)−1 (5
2

)
+ 2

=
2s2 + 7s+ 1
s2 + 5s+ 6

.

From the transfer function it is easy to determine the differential equation

Y (s) = G(s)U(s)
(s2 + 5s+ 6)Y (s) = (2s2 + 7s+ 1)U(s)

ÿ+ 5ẏ+ 6y = 2ü+ 7u̇+ u
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b. The transfer function is

G(s) = C(sI − A)−1 B+ D

=
(
−2 1

) (s+ 7 −2
15 s− 4

)−1 (3
8

)
=

=
2s+ 3

s2 + 3s+ 2
.

The differential equation becomes

Y (s) = G(s)U(s)
(s2 + 3s+ 2)Y (s) = (2s+ 3)U(s)

ÿ+ 3ẏ+ 2y = 2u̇+ 3u

c. G(s) = 5s+ 8
s+ 1

, ẏ+ y = 5u̇+ 8u

d. G(s) = 3s2 + 7s+ 18
s2 + 2s+ 5

, ÿ+ 2ẏ+ 5y = 3ü+ 7u̇+ 18u

2.3 a. Partial fraction expansion of the transfer function yields

G(s) = 2+ 2
s+ 3

−
5

s+ 2

and by applying the inverse Laplace transform, one obtains the impulse response

h(t) = L−1G(s) = 2δ (t) + 2e−3t − 5e−2t, t ≥ 0.

Because the system matrix was given in diagonal form, another possibility would have been
to compute the impulse response as

h(t) = CeAt B+ Dδ (t) =
1 1

  e−2t 0
0e−3t

 5
2

+ 2δ (t), t ≥ 0.

The step response is computed by e.g. integrating the impulse response

y(t) =
∫ t

0
h(τ)dτ =

∫ t

0

(
2δ (τ) + 2e−3τ − 5e−2τ ) dτ

= 2+
[

5
2

e−2τ −
2
3

e−3τ
]t

0

=
1
6
+

5
2

e−2t −
2
3

e−3t, t ≥ 0.

b. The transfer function has the partial fraction expansion

G(s) = 1
s+ 1

+
1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =
∫ t

0
h(τ)dτ = 3

2
− e−t −

1
2

e−2t, t ≥ 0.

c. h(t) = 5δ (t) + 3e−t, y(t) = 8− 3e−t, t ≥ 0

d. h(t) = 3δ (t) + e−t sin 2t+ e−t cos 2t = 3δ (t) +
√

2e−t sin
(
2t+ π

4
)

y(t) = 3+ 1
5 e−t (3+ sin 2t− 3 cos 2t) , t ≥ 0
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2.4 After the Laplace transform, one obtains

sX = AX + BU
Y = C X + DU

Solve for X

(sI − A)X = BU
X = (sI − A)−1 BU

This gives

Y = C(sI − A)−1 BU + DU =
(

C(sI − A)−1 B+ D
)
U

2.5 a. The poles are the solutions of the characteristic equation s2+4s+3 = 0, i.e. s = −1
and s = −3. The system lacks zeros. Since all poles have negative real part, the
system is stable.

b. The static gain is G(0) = 1
3 .

c. At a step response, the input signal u(t) is a step, that has the Laplace transform
U(s) = 1

s . The output becomes

Y (s) = G(s)U(s) = 1
s2 + 4s+ 3

1
s

The final value can be calculated using the final value theorem

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s 1
s2 + 4s+ 3

1
s
=

1
3

The final value theorem may be used only if we know that the final value exists
(i.e., that y(t) does not go to infinity). Since we have shown that the system is
stable, we know that the final value exists. The initial value may, in the same
manner, be computed using the initial value theorem

lim
t→0

y(t) = lim
s→∞

sY (s) = lim
s→∞

s 1
s2 + 4s+ 3

1
s
= 0

d. At an impulse response, the Laplace transform of the input signal is U(s) = 1.
The output signal becomes

Y (s) = 1
s2 + 4s+ 3

We use the final and initial value theorems

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s 1
s2 + 4s+ 3

= 0

lim
t→0

y(t) = lim
s→∞

sY (s) = lim
s→∞

s 1
s2 + 4s+ 3

= 0

e. The step response of the system is given by

Y (s) = 1
s2 + 4s+ 3

1
s

from a previous subproblem. The derivative of a signal is in the Laplace domain
given by multiplication of s. We may denote the derivative of the step response
z(t) and get

Z(s) = sY (s) = 1
s2 + 4s+ 3

We see that the derivative of the step response is the same as the impulse response,
and from the previous subproblem we thus get

lim
t→0

z(t) = 0
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2.6 a. The poles are the solutions the characteristic equation s2 + 0.6s + 0.25 = 0, i.e.
s = −0.3± 0.4i. The system lacks zeros.

b. The static gain is G(0) = 1.

c. The input (a step) has the Laplace transform U(s) = 1
s . The output becomes

Y (s) = G(s)U(s) = 0.25
s(s2 + 0.6s+ 0.25)

Because this system has complex poles, we first rewrite it as

Y (s) = ω2

s(s2 + 2ζωs+ω2)

where ω = 0.5 and ζ = 0.6. We then utilize the inverse Laplace transformation
(transform no. 28) and obtain

y(t) = 1− 1.25e−0.3t sin(0.4t+ 0.9273)

The step response is shown below.

0 5 10 15 20
0

1

t

y(t)

2.7 Laplace transformation of the differential equation mÿ+ cẏ+ ky = f yields

(ms2 + cs+ k)Y = F

and the transfer function is hence

G(s) = 1
ms2 + cs+ k

.

The poles are s = −c/2m ± i
√

k/m− c2/4m2. A change in k implies a change of
the imaginary part of the poles. A change in c affects both the real and imaginary
parts.
The poles cannot end up in the right half plane due to physical reasons, since
c ≥ 0 and m > 0.

2.8 a. G(s) = 1
LCs2 + RCs+ 1

b. G(s) = 1
Ts+ 1

, T = A
a

√
2h0

�

2.9 a. To be asymptotically stable, all eigenvalues of the system matrix A must lie strictly
within the left half plane (LHP). I.e. Re(λi) < 0 ∀ i.
The eigenvalues of A are given by the characteristic equation

det(λI − A) = 0

which in this case has two solutions, λ1 = −i and λ2 = i. Since the eigenvalues do
not lie strictly within the LHP, the system is not asymptotically stable.
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b. If all the eigenvalues of A lie strictly within the LHP, we are guaranteed stability.
If any eigenvalue lies strictly in the RHP we have an unstable system. If, on the
other hand, there are eigenvalues on the imaginary axis, the system can be either
stable or unstable.
In this example there are no eigenvalues in the RHP. Additionally, all eigenvalues
on the imaginary axis are distinct. This tells us that the system is stable.

2.10 The characteristic equation is

s3 + 2s2 + 3s+ 7 = 0

The transfer function is stable if all coefficients are positive, which is the case, and
if the product of the s2- and s1 coefficients is greater than the s0 coefficient. The
transfer function is therefore not stable, since 2 · 3 < 7.

2.11 First and second order systems are stable if and only if the coefficients in the
denominator polynomial of the transfer function are positive. All transfer functions
except for G3 are stable. All step responses except for E corresponds to stable
systems. Thus, G3 = E.
All transfer functions except G3, G4, and G7 have a static gain of Gi(0) = 1, which
means that the final value of the step response is one. G7 has a static gain of
G7(0) = 2/3, which gives G7 = C.
Step response D has a derivative that is not equal to 0 at t = 0. Checking the
initial derivative of the transfer functions gives that this only is true for G1 and G5.
G1 has a time constant of 10s while G5 has a time constant of 1s. Thus, G5 = D.
Now two step responses remain, A and B, which corresponds to second order
systems with complex poles and a static gain of one. The transfer functions that
fulfills these specifications are G2 and G6. The relative damping ζ is less for G6
than for G2, which gives G2 = A and G6 = B.

69



Solutions to Exercises 2. Dynamical Systems

2.12 PZ1. The system has the poles in −1/4± i and a zero in −1. The transfer function
is thus

G(s) = K s+ 1
(s+ 1

4)
2 + 1

( K s+ 1
s2 + 1

2 s+ 1
.

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K ,= 0

lim
t→+∞

y(t) = G(0) = K ,= 0

The step response is oscillating with period T = 2π/1 ( 6. This must be step
response D.
PZ2. The system has poles in −1 and −2 and a zero in 1. The transfer function is

G(s) = K s− 1
(s+ 1)(s+ 2)

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K ,= 0

lim
t→+∞

y(t) = G(0) = − K
2
,= 0

We see that the initial derivative and the final value have different signs. This fits
step response F.
PZ3. The system has poles in −1/4± i and a zero in 0. The transfer function is

G(s) = K s
(s+ 1

4)
2 + 1

( K s
s2 + 1

2 s+ 1

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K ,= 0

lim
t→+∞

y(t) = G(0) = 0

The step response is oscillating with period T = 2π/1 ( 6. This is step response
G.
PZ4. The system has poles in −1 and −2 and a zero in −3. The transfer function
is

G(s) = K s+ 3
(s+ 1)(s+ 2)

.

The initial value, initial derivative and final value become

y(0) = lim
s→+∞

G(s) = 0

ẏ(0) = lim
s→+∞

sG(s) = K ,= 0

lim
t→+∞

y(t) = G(0) = 3K
2
,= 0

The initial derivative and final value have the same sign. The only nonoscillative
step response which suits these criteria is C.
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2.13 a. For the impulse response, u(t) = δ (t) (Dirac function). We have

U(s) = 1
Y (s) = G(s)U(s) = G(s)

Initial value:
lim
t→0

y(t) = lim
s→∞

sY (s) = lim
s→∞

sG(s)

Final value:
lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sG(s)

All transfer functions have stable poles, and thus we may use the final and initial
value theorems.

y(0) lim
t→∞

y(t)

G1(s) 1 0
G2(s) 3 0
G3(s) 0 0
G4(s) 0 0
G5(s) 0 1
G6(s) 0 1

Both impulse responses in the figure have initial value 0 and final value 0. Thus,
they correspond to G3(s) and G4(s). The poles of G3(s) are located in s = −1, and
the poles of G4(s) in s = −3. G4(s) is thus a faster system, which corresponds
to the impulse response for lemonade. G3(s) is slower, which corresponds to the
impulse response for whole grain pasta.

b. Normally, you eat a certain amount of food in a relatively short time, and then do
not eat for a longer period of time. Thus, you may model food intake as an impulse,
that occurs instantaneously compared to the time it takes for the body to digest
the food.
A step response in food intake would correspond to eating continuously during a
longer time. Feeding through intravenous therapy could be described by a step
response.

2.14 a.

Y = G1(U + G2Y )
Y (1− G1G2) = G1U

Y =
G1

1− G1G2
U

b.

Y = G2(H1U + G1U + H2Y )
Y (1− G2 H2) = (G2 H1 + G2G1)U

Y =
G2 H1 + G2G1

1− G2 H2
U

c. Introduce the auxiliary variable Z, being the output of G1

Z = G1(U + G3(Z + G2 Z))
Z(1− G1G3 − G1G3G2) = G1U

Z = G1

1− G1G3 − G1G3G2
U

Y =
G2G1

1− G1G3 − G1G3G2
U
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d.

Y = G2(−H2Y + G1(U − H1Y ))
Y (1+ G2 H2 + G2G1 H1) = G2G1U

Y =
G2G1

1+ G2 H2 + G2G1 H1
U

2.15 a. From the block diagram we get

Y (s) = GP(s)(U(s) + D(s))
U(s) = GR(s)E(s)
E(s) = R(s) − Y (s)

Solve for Y (s):

Y (s) = GP(s)GR(s)
1+ GP(s)GR(s)

R(s) + GP(s)
1+ GP(s)GR(s)

D(s)

The system has two input signals, R(s) and D(s). The transfer function from R(s)
to Y (s) is

Gyr(s) =
GP(s)GR(s)

1+ GP(s)GR(s)

b. The transfer function from D(s) to Y (s) is

Gyd(s) =
GP(s)

1+ GP(s)GR(s)

c. Solve for E(s):

E(s) = 1
1+ GP(s)GR(s)

R(s) − GP(s)
1+ GP(s)GR(s)

D(s)

The transfer function from R(s) to E(s) becomes

Ger(s) =
1

1+ GP(s)GR(s)

d. Solve for U(s):

U(s) = GR(s)
1+ GP(s)GR(s)

R(s) − GP(s)GR(s)
1+ GP(s)GR(s)

D(s)

The transfer function from D(s) to U(s) becomes

Gud(s) = −
GP(s)GR(s)

1+ GP(s)GR(s)

2.16 a. Partial fraction expansion yields

G(s) = s2 + 6s+ 7
s2 + 5s+ 6

=
s+ 1

s2 + 5s+ 6
+ 1 = −1

s+ 2
+

2
s+ 3

+ 1

One has a certain freedom when choosing the coefficients of the B and C matrices.
However, the products bici remain constant. Let e.g. b1 = b2 = 1. This enables us
to immediately write the system in diagonal form:

dx
dt
=

−2 0
0 −3

 x +

1
1

 u

y =
−1 2

 x +
1

 u
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b. First rewrite the system as

G(s) = b0s+ b1

s2 + a1s+ a2
+ d = s+ 1

s2 + 5s+ 6
+ 1

The controllable canonical form can be directly read from the transfer function

dx
dt
=

−5 −6
1 0

 x+
1

0

 u

y =
1 1

 x+
1

 u

c. The observable canonical form is obtained in the same manner

dx
dt
=

−5 1
−6 0

 x+
1

1

 u

y =
1 0

 x+
1

 u
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Frequency Analysis

3.1

a. The output is given by

y(t) = pG(3i)p sin
(

3t+ arg G(3i)
)

where
pG(iω)p = 0.01

√
1+ 100ω2

√
1+ω2

√
1+ 0.01ω2

and
arg G(iω) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains pG(iω)p = 0.0909 and arg G(iω) = −0.003 which gives

y(t) = 0.0909 sin(3t− 0.003)

b. Reading from the plot yields pG(3i)p ( 0.09 and arg G(3i) ( 0. We obtain

y(t) = 0.09 sin 3t

3.2 a. The air temperature will affect the water temperature much faster in the small
garden pool than in the sea. Faster influence means that the gain is greater for
higher frequencies. Thus, the solid line represents the garden pool – G2(s), and
the dashed line the sea water – G1(s).

b. The time scale in the Bode diagram is hours. Thus, we convert the period time to
hours:

1 year = 365 · 24 h = 8760 h
The angular frequency of the oscillation thus becomes

ω =
2π
T
=

2π
8760

rad/h = 7 · 10−4 rad/h.

We read off the dashed amplitude curve at this frequency and get

pG(iω)p ( 0.5

This means that the oscillation in the output (the water temperature) has half
as big amplitude as the oscillation in the input (the air temperature) at this
frequency. The difference between the maximum and minimum temperature in
the air is ∆Tluf t = 19○C−(−5○C ) = 24○C. The difference between the maximum
and minimum temperature in the water thus becomes ∆Tvatten = 0.5·24○ C = 12○C.

c. The angular frequency for the oscillation is now

ω =
2π
T
=

2π
24

rad/h = 0.26 rad/h.

We read off the solid phase curve at this frequency and get

arg(G(iω)) ( −30○.

This means that the peak of the output signal will be 30○
360○ ( 0.08 period =

0.08 · 24 h = 1.92 h later than the peak of the input signal. Thus, the pool is as
warmest around 15.00.
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3.3 a. The output is given by

y(t) = pG(iω)p sin
(
ωt+ arg G(iω)

)
where

pG(iω)p =
∣∣∣∣ 10
(iω)2 + 0.5iω + 1

∣∣∣∣ = 10√
(1−ω2)2 + (0.5ω)2

and
arg G(iω) = arg 10

(iω)2 + 0.5iω + 1
= − arg

(
(1−ω2) + 0.5ωi

)

=


− arctan 0.5ω

1−ω2 , ω < 1
−π/2, ω = 1
− arctan 0.5ω

1−ω2 −π, ω > 1

The output becomes

10.4 sin (0.2t− 5.9○), 20.0 sin (t− 90.0○), 0.011 sin (30t− 179.0○)

b. For ω = 0.2 one reads pG(iω)p ( 10 and arg G(iω) ( −5○. For ω = 1 one reads
pG(iω)p ( 20 and arg G(iω) ( −90○. For ω = 30 one reads pG(iω)p ( 0.01 and
arg G(iω) ( −180○. The output is approximately

10 sin (0.2t− 5○), 20 sin (t− 90○), 0.01 sin (30t− 180○)

3.4 We use the following general approach to draw Bode plots

• Factor the transfer function of the system.
• Determine the low frequency asymptote (small s).
• Determine the corner frequencies (i.e. the magnitude of the poles and zeros

of the system.)
• Draw the asymptotes of the gain curve from low to high frequencies, aided by

the following rules of thumb
– A pole decreases the slope of the gain curve by 1 at the corner frequency.
– A zero increases the slope of the gain curve by 1 at the corner frequency.

• Draw the asymptotes of the phase curve from low to high frequencies, aided
by the following rules of thumb

– A (stable) pole decreases the value of the phase curve by 90○ at the corner
frequency.

– A (stable) zero increases the value of the phase curve by 90○ at the corner
frequency.

• Draw the real gain- and phase curves, aided by the asymptotes and sample
curves in the collection of formulae.

a. The transfer function can be written

G(s) = 3 · 1
1+ s/10

Low frequency asymptote: G(s) ( 3.
Corner frequency: ω = 10 rad/s (pole).
The gain curve starts with slope 0 and value 3. The slope decreases by 1 at
ω = 10 rad/s, due to the pole, and thus ends being −1.
The phase curve starts at 0○. The phase is decreased by 90○ at ω = 10 rad/s, due
to the pole, and thus ends being −90○.
The asymptotes and the finished Bode plots are shown in Figure S3.1.
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Figure S3.1 The Bode plot of G(s) = 3
1+s/10 .

b. The transfer function can be written

G(s) = 10 · 1
1+ 10s

· 1
1+ s

Low frequency asymptote: G(s) ( 10.
Corner frequencies: ω = 0.1 rad/s (pole), ω = 1 rad/s (pole).
The gain curve starts with slope 0 and value 10. The slope is decreased by 1 at
ω = 0.1 rad/s, due to the first pole, and by 1 at ω = 1 rad/s, due to the second
pole. Thus, the final slope becomes −2.
The phase curve starts at 0○. The phase is decreased by 90○ at ω = 0.1 rad/s, due
to the first pole, and by 90○ at ω = 1 rad/s, due to the second pole. Thus, the final
phase is −180○.
The asymptotes and the finished Bode plot are shown in Figure S3.2.

c. The transfer function can be written

G(s) = e−s · 1
1+ s

Low frequency asymptote: G(s) ( 1.
Corner frequency: ω = 1 rad/s (pole).
The delay (e−s) does not affect the gain curve, which starts with slope 0 and value
1. The slope is decreased by 1 at ω = 1 rad/s, due to the pole, and the final slope
is thus −1.
The phase curve is harder to sketch. One approach is to draw the asymptotes of
the system without the delay and superposition it with the phase curve of e−s,
which can be obtained from the collection of formulae or by computing some points
and interpolating between these.
Anyway, we see that the phase curve starts at 0○ and that the phase then decreases
both due to the pole (at ω = 1 rad/s) and the delay. The delay causes the phase to
approach −∞ for large ω .
The finished plot is shown in Figure S3.3.
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Figure S3.2 Bode plot of G(s) = 10
(1+ 10s)(1+ s)

.

d. The transfer function can be written

G(s) = 1
s
· (1+ s) · 1

1+ s/10

Low frequency asymptote: G(s) ( 1
s

.

Corner frequencies: ω = 1 rad/s (zero), ω = 10 rad/s (pole).
The gain curve starts with slope −1. The slope increases by 1 at ω = 1 rad/s,
due to the zero, and at ω = 10 rad/s the slope decreases by 1, due to the pole.
Consequently, the final slope is −1.
The phase curve starts at −90○. The phase increases by 90○ at ω = 1 rad/s, due
to the zero, and decreases by 90○ at ω = 10 rad/s, due to the pole. Consequently,
the final phase is −90○.
The finished plot is shown in Figure S3.4.

e. The transfer function can be written

G(s) = 2 · 1
s
· (1+ 5s) · 1

1+ 2ζ (s/2) + (s/2)2

where ζ = 0.2.

Low frequency asymptote: G(s) ( 2
s

.

Corner frequencies: ω = 0.2 rad/s (zero), ω = 2 rad/s (complex conjugated pole
pair).
The gain curve starts with slope −1. The slope is increased by 1 at ω = 0.2 rad/s,
due to the zero, and decreased by 2 at ω = 2 rad/s, due to the pole pair. Conse-
quently, the final slope is −2.
The phase curve starts at −90○. The phase is increased by 90○ at ω = 0.2 rad/s,
due to the zero, and decreased by 180○ at ω = 2 rad/s, due to the pole pair.
Consequently, the final phase is −180○.
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Figure S3.3 Bode plot of G(s) = e−s

1+s .

The low damping (ζ = 0.2) of the complex conjugated pole pair gives the gain curve
a resonance peak at ω = 2 rad/s. Additionally, the phase decreases rapidly at this
frequency, cf. the sample curves in the collection of formulae. The finished plot is
shown in Figure S3.5.

3.5 a. The Nyquist curve start in 3 (the static gain) for ω = 0 rad/s. Both the gain
and phase are strictly decreasing, which makes the curve turn clockwise while
its distance to the origin decreases. The gain and phase approach 0 and −90○,
respectively, for large values of ω. The curve is thus bound to the fourth quadrant
and approaches the origin along the negative imaginary axis as ω →∞.
Aided by this analysis, one can now sketch the Nyquist curve by choosing a few
frequencies (e.g. ω = 1, 10 and 100 rad/s) and drawing the corresponding points
in the complex plane. The finished curve is shown in Figure S3.6.

b. The Nyquist curve starts in 10 (the static gain) for ω = 0 rad/s. Both the gain
and phase are strictly decreasing, which makes the curve turn clockwise while
its distance to the origin decreases. The gain and phase approach 0 and −180○,
respectively, for large values of ω. The curve will thus go from the fourth to the
third quadrant, approaching the origin along the negative real axis as ω →∞.
The intersection with the negative imaginary axis can be drawn by reading off
the magnitude when the phase is −90○. One can now sketch the Nyquist curve
by choosing a few additional frequencies (e.g. ω = 0.1, 1 rad/s) and drawing
the corresponding points in the complex plane. The finished curve is shown in
Figure S3.7.

c. The Nyquist curve starts in 1 (the static gain) for ω = 0 rad/s. Both the gain
and phase are strictly decreasing, which makes the curve turn clockwise while
its distance to the origin decreases. The gain and phase approach 0 and −∞,
respectively, for large values of ω . The curve will thus rotate infinitely many times
as it approaches the origin. The first intersections with the axis can be drawn
by reading off the magnitude when the phase is −90○, −180○, −270○ and −360○,
respectively. The finished curve is shown in Figure S3.8.
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Figure S3.4 Bode plot of G(s) = 1+ s
s(1+ s/10)

.

3.6 Let the sought transfer function be G(s). The gain curve starts with slope −1,
which indicates that G(s) contains a factor 1

s (an integrator). We observe that
there are two corner frequencies: ω1 = 1 and ω2 = 100 rad/s. The gain curve
breaks upwards once at ω1 and downward once at ω2. Hence, the nominator hosts
a factor 1 + s, whereas the denominator contains a factor 1 + s/100. In addition,
G(s) contains a constant gain K . We thus have

G(s) = K(1+ s)
s(1+ s/100)

We evaluate the low frequency asymptote of the gain curve at e.g. ω = 0.01 rad/s,
in order to determine K . This yields

pG(0.01i)p = K
0.01 = 1 [ K = 0.01

Finally we verify that the phase curve matches this system.

3.7 Let the sought transfer function be G(s). The gain curve has two corner frequen-
cies: ω1 = 2 and ω2 = 100 rad/s. The gain curve breaks downwards once at ω1 and
three times at ω2. Thus the denominator of G(s) contains the factors (1+ s

2) and
(1+ s

100)
3. The slope of the low frequency asymptote is 1. Thus G(s) has a factor

s in the nominator. Additionally, G(s) contains a constant gain K . We have

G(s) = Ks
(1+ s

2)(1+
s

100)
3

The factor K is computed by determining a point on the LF asymptote, e.g.
GLF(s) = Ks

pGLF(iω)p = Kω = 1

for ω = 0.5 rad/s. This gives
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Figure S3.6 Nyquist curve of G(s) = 3
1+ s/10

.

K = 2

Finally we verify by checking that the phase curve matches this system.
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Feedback Systems

4.1 a. Laplace transformation of the differential equation yields

sY (s) + 0.01Y (s) = 0.01U(s)

The transfer function GP(s) is thus given by

Y (s) = GP(s)U(s) =
0.01

s+ 0.01
U(s)

b. The transfer function of the closed loop system becomes

G(s) = GP(s)GR(s)
1+ GP(s)GR(s)

=

0.01
s+ 0.01

K

1+ 0.01
s+ 0.01

K
=

0.01K
s+ 0.01+ 0.01K

c. The desired and actual characteristic polynomials are the same if all their coeffi-
cients match. Identification of coefficients yields

0.1 = 0.01+ 0.01K \ K = 9

4.2 Since r(t) = 0, the control error becomes e(t) = −y(t).

Y (s) = GP(s)(F(s) − GR(s)Y (s)) \ Y (s) = GP(s)
1+ GR(s)GP(s)

F(s)

If f (t) is a unit step, we have F(s) = 1
s .

a. Seek y(∞) for GR = K

y(∞) = lim
s→0

sY (s) = lim
s→0

s 1
(ms2 + ds+ K)

1
s
=

1
K

The function sY (s) has all poles in the left-half plane when the parameters m, d
and K are positive.

b. The same assignment, but with GR(s) = K1 + K2/s. This yields

y(∞) = lim
s→0

s 1
(ms2 + ds+ K1 +

K2
s )

1
s

= lim
s→0

s
ms3 + ds2 + K1s+ K2

= 0

under the assumption of stability, which is the case for m > 0, d > 0 and K1 >
m
d K2 > 0. Rule: If the disturbance is a step, one needs at least one integrator
before the point in the block diagram where the disturbance is introduced, in
order to make the stationary error zero.

4.3 a. For the closed loop system it holds, when R = 0, that

U(s) = K(0− Y (s)) = −K(GP(s)U(s) + N(s))

from which one obtains

U(s) = −K
1+ KGP(s)

N(s)

Y (s) = GP(s)U(s) + N(s) = 1
1+ KGP(s)

N(s)
(4.1)
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b. Inserting GP(s) = 1
s+1 into (4.1) yields the relations

U(s) = −K(s+ 1)
s+ 1+ K

N(s)

Y (s) = GP(s)U(s) + N(s) = s+ 1
s+ 1+ K

N(s) =: Gyn(s)N(s)

In stationarity it holds that

y(t) = ApGyn(iω)p sin(ωt+ arg Gyn(iω))

= A
√

1+ω2√
(K + 1)2 +ω2

sin
(

ωt+ arctanω − arctan ω
K + 1

)

u(t) = −Ky(t)

= −K A
√

1+ω2√
(K + 1)2 +ω2

sin
(

ωt+ arctanω − arctan ω
K + 1

)

c. With A = 1 and K = 1 the amplitudes of the oscillations in u and y become

Au =

√
1+ω2

4+ω2

Ay =

√
1+ω2

4+ω2

For ω = 0.1 rad/s the amplitudes become

Au ( 0.5
Ay ( 0.5

while ω = 10 rad/s yields
Au ( 1
Ay ( 1

4.4 With GP(s) = 1/(Js2) we obtain

E(s) = θref (s) − θ(s)

= θref (s) − GP(s)(M(s) + KGR(s)E(s))

[ E(s) = 1
1+ KGP(s)GR(s)

θref (s) −
GP(s)

1+ KGP(s)GR(s)
M(s)

Assume step changes in disturbance momentum M0
d and reference θ 0

ref . We postu-
late GR(s) = Q(s)/P(S), which gives

E(s) = 1

1+ K
Q(s)

Js2 P(s)

· θ 0
ref

s
−

1
Js2

1+ K
Q(s)

Js2 P(s)

· M0
d

s

=
s2J P(s)

s2J P(s) + KQ(s)
· θ 0

ref

s
−

P(s)
s2J P(s) + KQ(s)

· M0
d

s

The stationary error becomes

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s)

= 0− P(0)
KQ(0)

M0
d = −

P(0)
KQ(0)

M0
d

where we have assumed that Q(0) ,= 0 and that the conditions for the final value
theorem are fulfilled. We see that P(0) = 0 yields e∞ = 0. In order to eliminate
persistent angular errors caused by disturbance momenta, it is consequently re-
quired to utilize a controller GR(s) with at least one pole in the origin (P(0) = 0).
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4.5 The input of the thermocouple is the temperature u(t) of the bath, which gives

u(t) = t [ U(s) = 1
s2

The output y(t) is the reading of the temperature sensor. Thus

Y (s) = G(s)U(s) = 1
1+ sT

· 1
s2

For the error e(t) = u(t) − y(t) it holds that

E(s) = U(s) − Y (s) = 1
s2

[
1− 1

1+ sT

]
=

sT
1+ sT

· 1
s2

The stationary error is obtained by means of the final value theorem

e(∞) = lim
s→0

sE(s) = lim
s→0

s2T
1+ sT

1
s2 = T = 10

The thermocouple measurement is hence 10○ less than the actual temperature.
I.e. the actual temperature of the bath is 102.6○C + 10○C = 112.6○C.
Observe that the error in this has a bounded limit, despite the fact that both u(t)
and y(t) lack (bounded) limits as t → ∞. It is the difference between u and y
which converges to a constant value.

4.6 The low frequency asymptote is

GLF(s) =
K
s2

where the constant K is given by

pGLF(iω)p =
K

ω2 ; pGLF(i)p = 1 [ K = 1

At the corner frequency ω1 = 1 rad/s the slope changes from −2 to 0, and at
ω2 = 5 rad/s it changes from 0 to −1. The transfer function for the open loop
system is thus

Go(s) =
(1+ sT1)

2

s2(1+ sT2)

where T1 = 1/ω1 = 1 and T2 = 1/ω2 = 0.2.
The transfer function of the closed loop system becomes

G(s) = Go(s)
1+ Go(s)

The output is Y (s) = G(s)R(s) and the error E(s) becomes

E(s) = R(s) − Y (s) = 1
1+ Go

R(s) = s2(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

R(s)

a.
R(s) = a

s
[ e∞ = lim

t→∞
e(t) = lim

s→0
sE(s)

= lim
s→0

as2(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 0

The system can thus track inputs r(t) = a without a stationary error.

b.
R(s) = b

s2 [ e∞ = lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

bs(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 0
−

The system can also track inputs r(t) = bt without a stationary error.
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c.
R(s) = 2c

s3 [ e∞ = lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

2c(1+ 0.2s)
s2(1+ 0.2s) + (1+ s)2

= 2c ,= 0

The input r(t) = ct2, however, yields a stationary error.

d. Superposition can be used, since the closed loop system is linear and time invariant
(LTI). Here, the input is the sum of the inputs in sub-assignments a and b. The
total (superpositioned) stationary error thus becomes e∞ = 0+ 0 = 0.

e. The input r(t) = sin(t) yields

R(s) = 1
1+ s2 [ lim

s→0
sE(s)

= lim
s→0

s s2(1+ 0.2s)
(s2(1+ 0.2s) + (1+ s)2)(1+ s2)

= 0

but the input r(t) = sin(t) yields the output y(t) = yo sin(t+ φ), where

yo = pG(i)p , φ = ar� G(i)

once transients have decayed. The error e(t) = r(t) − y(t) is thus also a sinusoid
and the limit

lim
t→∞

e(t)

does not exist. This shows that the final value theorem should not be used without
caution. It is only valid for cases where a limit really exists. The criterion is that all
poles of sE(s) must have negative real parts. (The factor s2+1 in the denominator
yields two poles on the imaginary axis.)

4.7 a. The sensitivity function is given by

S(s) = 1
1+ GP(s)GR(s)

=
1

1+ 6.5
(s+1)3

=
s3 + 3s2 + 3s+ 1

s3 + 3s2 + 3s+ 7.5

b. For ω = 0 rad/s we have pS(iω)p = 1/7.5. Low-frequency load disturbances are
thus damped by a factor 7.5.

c. The sensitivity functions has its maximum value pS(iω)p =( 10 at ω ( 1.6 rad/s.

4.8 a. The top curve shows the complementary sensitivity function, whereas the sensi-
tivity function is given by the bottom curve.

b. The disturbances at various frequencies are amplified according to the gain curve
of the sensitivity function. Disturbances below 0.2 rad/s are hence reduced, distur-
bances in the range 0.2 to 2 rad/s are amplified and disturbances above 2 rad/s pass
straight through. The worst case gain, 2, is obtained at the frequency 0.55 rad/s.

c. The complementary sensitivity function, corresponding to the closed loop transfer
function from r to y, lies close to 1 up to approximately 0.7 rad/s.

d. The maximal magnitude of the sensitivity function equals the inverse of the min-
imal distance between the Nyquist curve and the point −1. The minimal distance
is thus 1/2 = 0.5. The distance to −1, as the Nyqist curve intersects the negative
real axis, must hence be at least 0.5. This implies that the gain margin is at least
2.
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4.9 The closed loop transfer function is given by

G(s) = Go

1+ Go
=

K
s2 + 2s+ K

The poles of the closed loop system are given by the characteristic equation

s2 + 2s+ K = 0 [ s = −1±
√

1− K

For K = 0 the roots s1,2 = 0,−2, i.e. the poles of the open loop system, are
obtained. The closed loop system G(s) has a double pole in s = −1 for K = 1. And
as K →∞ the roots become

s1,2 = −1± i∞

The root locus, i.e. the roots of the characteristic equation as K varies, is shown
in Figure S4.1 .

−2 −1.5 −1 −0.5 0
−4

−2

0

2

4

Figure S4.1 Root locus of the system in assignment 4.9.

4.10 The open loop transfer function of the system is

Go(s) =
K(s+ 10)(s+ 11)

s(s+ 1)(s+ 2)
= K Q(s)

P(s)

The closed loop system becomes

G(s) = Go(s)
1+ Go(s)

=
KQ(s)

P(s) + KQ(s)

The characteristic equation is thus

P(s) + KQ(s) = 0
\s(s+ 1)(s+ 2) + K(s+ 10)(s+ 11) = 0
\s3 + (3+ K)s2 + (2+ 21K)s+ 110K = 0

a. The criterion for stability is that all coefficients of the characteristic polynomial

s3 + (3+ K)s2 + (2+ 21K)s+ 110K

are positive and that
(3+ K)(2+ 21K) > 110K

The inequality yields
K2 −

15
7

K + 2
7
> 0
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It is fulfilled for K > 2 and K < 1/7. The closed loop system is hence stable for

0 < K <
1
7

and
K > 2

b. Find the root locus for the characteristic equation, P(s) + KQ(s) = 0

s(s+ 1)(s+ 2) + K(s+ 10)(s+ 11) = 0 (4.2)

Let n = the degree of P(s) and m = the degree of Q(s). The root locus has a
maximum of max(n, m) = 3 branches.
Starting points:

P(s) = 0 [ s = 0,−1,−2

Ending points:
Q(s) = 0 [ s = −10,−11

The third branch will approach infinity.
To the right of each real point of the root locus, there must exists an odd number
of zeros of P(s) and Q(s). The points x, which fulfill this are

x < −11 − 10 < x < −2 − 1 < x < 0

The root locus has pn−mp = 1 asymptote. This is the negative real axis, since the
range x < −11 on the real axis belongs to the root locus.
The intersection with the imaginary axis is obtained by introducing s = iω (4)
above. This yields

−(3+ K)ω2 + 110K + i(−ω3 + (2+ 21K)ω) = 0

The resulting equation has a solution ω = K = 0 and{
−(3+ K)ω2 + 110K = 0

ω2 − (2+ 21K) = 0

gives K = 1/7, ω = ±
√

5 or K = 2, ω = ±
√

44.
We know from sub-assignment a that the closed loop system is unstable for 1/7 <
K < 2. Consequently, the root locus lies in the right half plane for these values of
K . The principal shape of the root locus is shown in Figure S4.2.

4.11 a. The open loop transfer function of the system is

G0(s) =
K

s(s+ 1)(s+ 2)

The closed loop transfer function is thus

Gcl(s) =
G0(s)

1+ G0(s)
=

K
s(s+ 1)(s+ 2) + K

The system is asymptotically stable if all zeros of the characteristic polynomial

s(s+ 1)(s+ 2) + K = s3 + 3s2 + 2s+ K

have negative real parts. This is the case if all coefficients are positive and if

3 · 2 > K

The system is thus asymptotically stable if 0 < K < 6.
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−40 −30 −20 −10 0
−20

−10

0
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20

−4 −2 0

−5

0

5

Figure S4.2 Root locus of the system in assignment 4.10. The right hand figure is a
magnification of the area close to the origin.

b. Now we want to study the dependence of K on the stationary error, as the reference
increases as a linear function of time. The Laplace transform of the control error
is given by

E(s) = 1
1+ G0

R(s) = s(s+ 1)(s+ 2)
s(s+ 1)(s+ 2) + K

R(s)

With r(t) = 0.1t, i.e. R(s) = 0.1/s2, we obtain

E(s) = 0.1(s+ 1)(s+ 2)
s(s(s+ 1)(s+ 2) + K)

The signal sE(s) has all poles in the left-half plane when 0 < K < 6, according to
sub-assignment a. For this case we can utilize the final value theorem

e(∞) = lim
s→0

s 0.1(s+ 1)(s+ 2)
s(s(s+ 1)(s+ 2) + K)

=
0.2
K

In order to obtain a stationary error less than 5 mV for the given reference, it
is required that K > 40. For such large values of K the system is, however, not
stable. It it hence impossible to meet the specification.

4.12 According to the Nyquist theorem, the closed loop system is stable exactly for those
K > 0, which are also

a. K < 2

b. K < 1/1.5 = 2/3

c. K < 1/1.5 = 2/3

d. K < 1/(2/3) = 1.5

4.13 The Nyquist curve intersects the negative real axis when arg(G0(iω)) = −π , i.e.
when

−3 arctan(ω) = −π

This is fulfilled when
ω = tan π

3
=
√

3

The intersection point is given by

pG0(i
√

3)p = 1
8

This means that the system is stable for K < 8.
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4.14 The system is stable for

0 < K <
1

3.5
\ 0 < K < 0.29

as well as
1 < K <

1
0.5

\ 1 < K < 2

4.15 The easiest way to solve the problem is through the Nyquist theorem. The transfer
function of the process is

GP(s) =
e−9s

(1+ 20s)2

The phase shift of the process is

arg GP(iω) = −9ω − 2 arctan(20ω)

We seek the frequency for which the phase shift is −180○. It is obtained by solving
the equation

−9ω − 2 arctan(20ω) = −π

The equation lacks an analytic solution. However, it can be solved numerically in
several ways. The solution is

ω0 ( 0.1
The next step is to determine the process gain for the given frequency.

pG(iω0)p =
1

1+ 400ω2
0
= 0.2

This gives us the gain margin

Am =
1

0.2
= 5

The gain K = 5 is thus the maximal admissible gain.

4.16 The loop transfer function is

GP(s)GR(s) = e−sL · 10(1+ 1
2s )

(1+ 10s)
= e−sL · 5(1+ 2s)

s(1+ 10s)

The cross-over frequency is the frequency where the magnitude of the loop transfer
function is equal to one.

pG0(iω c)p =
5
√

1+ 4ω2
c

ω c
√

1+ 100ω2
c
= 1

The equation can be solved numerically or analytically

25(1+ 4ω2
c) = ω2

c(1+ 100ω2
c)

ω4
c − 0.99ω2

c − 0.25 = 0
ω2

c ( 1.199
ω c ( 1.1 rad/min

The phase at this frequency is

arg G0(iω c) = arctan 2ω c − arctan 10ω c − 90○ −ω c L

The requirement of the phase margin, φm ≥ 10○, gives

φm = 180○ + arg G0(iω c)

= 180○ + arctan 2ω c − arctan 10ω c − 90○ −ω c L
( 70○ −ω c L ≥ 10○
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This gives the following limit for the time delay L:

L ≤ 60
ω c

· π
180

= 1 min

The time delay must therefore be less than one minute.

4.17 a. True. Am = 1/pKGP(iω0)p, where ω0 is the frequency for which the Nyquist curve
intersects the negative real axis.

b. True. φm =π + arg GP(iω) for pGP(iω)p = 1.

c. False. As K is decreased, all points on the Nyquist curve move closer to the origin.
Thus the phase margin increases as K is decreased.

d. True. The system is stable for K = 1 and all poles of GP(s) lie in the left half
plane. Consequently, the simplified Nyquist criterion can be applied. For K = 2,
the point −1 lies to the right of the Nyquist curve, when it is traversed as ω
increases. The closed loop system is thus stable.

4.18 a. This is the definition of the gain margin. From the plot one sees that the phase
−180○ corresponds to the gain ∼ 0.4. This yields the gain margin 1/0.4 = 2.5.

b. This is the definition of the phase margin. From the plot one sees that for gain 1,
the phase is approximately −140○. This yields a phase margin of approximately
180○ − 140○ = 40○.

4.19 The cross-over frequency and phase margin are read to be ω c = 0.07 and φm = 40○,
respectively. The delay margin becomes

Lm =
φm

ω c
=

40○ · π
180○

0.07
= 10

90



Solutions to Exercises 5

State Feedback and Kalman Filtering

5.1 a. From the controllability matrix

Ws =
B AB

 =

β 1− β
1 −2


we obtain det Ws = −β − 1, i.e. controllability for all β ,= −1.

b. The observability matrix

Wo =

 C
C A

 =

0 γ
0 −2γ


has zero determinant independent of γ , i.e. the system is not observable for any
value of γ .

5.2 The controllability matrix is given by

Ws =
B AB

 =

 4 −8
−2 4


The controllable states are determined by the columns of Ws and are given as
α(2,−1)T , where α is a scalar.

5.3
Wo =

 C
C A

 =

 1 1
−1 −1


We see that Wo is singular (det Wo = 0). The state x is non-observable if and only
if (iff)

Wo x = 0
We obtain a non-observable x iff x1 + x2 = 0. The non-observable states are thus
given by

x = α
 1
−1


where α is a number ,= 0.

5.4 The controllability matrix

Ws =
B AB

 =

1 −1
0 0


is singular, yielding an uncontrollable system. We can, however, conduct a more
detailed investigation. The system can be written

dx1

dt
= −x1 + u, x1(0) = 1

dx2

dt
= −2x2, x2(0) = 1

Hence x2(t) = x2(0)e−2t = e−2t, independent of the applied control signal u. On
the contrary, x1 can be controlled by means of u, to take on any desired value.
Thus, x2 → 0 as t → ∞. The states (x1, x2) which can be reached in finite time
t < ∞ make up the band 0 < x2 < 1 in Figure S5.1.

As a consequence, only the states
 3

0.5

 and
10

0.1

 can be reached in finite
time.
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1

x1

x2

Figure S5.1 Reachable states in assignment 2.9.

5.5 The system is controllable, since

Ws =
B AB

 =

1 4
2 −7


has full rank.

5.6 a.
Ws =

B AB
 =

5 −10
0 0


Ws has rank 1, i.e. the system is not controllable. The states which can be reached
in finite time from the origin are determined by the columns of Ws. The controllable
states can be parametrized by t as x = t · (1 0)T .

b. G(s) = C(sI − A)−1B+ D = 5/(s+ 2).

c. The following is a minimal state space representation of G(s){
ẋ = −2x+ 5u
y = x

5.7 a. True. Since the system is controllable, one can place the poles of the closed loop
system arbitrarily by means of linear feedback from all state variables.

b. False. A linear state feedback does not affect the zeros of the closed loop system.

c. True if the system is observable.

d. True if the system is observable.

5.8 The closed loop system becomes{
ẋ = (A− BK)x+ Bkrr
y = Cx

The characteristic equation is thus

det(sI − A+ BK) = s2 + (3+ k1 + 2k2)s+ 2(1+ k1 + k2) = 0

We need (s+ 4)2 = s2 + 8s + 16 = 0. Identification of coefficients yields k1 =
9, k2 = −2. The closed loop transfer function is G(s) = C(sI − A + BK)−1 Bkr.
The stationary gain is G(0) is unity if

G(0) = C(−A+ BK)−1 Bkr =
kr

4
= 1

yielding kr = 4.
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5.9 a. The characteristic polynomial of the closed loop system is given by

det(sI − (A− BK)) =
∣∣∣∣s+ 0.5+ 3k1 3k2

−1 s

∣∣∣∣ = s2 + (0.5+ 3k1)s+ 3k2

The desired characteristic polynomial is

(s+ 4+ 4i)(s+ 4− 4i) = s2 + 8s+ 32

Identification of coefficients yields

K =
5/2 32/3

 =
2.5 10.7


The closed loop system transfer function is Gyr(s) = C(sI − A + BK)−1 Bkr. The
stationary gain is unity if

Gyr(0) = C(−A+ BK)−1 Bkr =
3
32

kr = 1

which yields kr = 32/3.

b. According to a rule of thumb, the observer poles shall be chosen 1.5–2 times faster
than the state feedback. Place the poles of the Kalman filter so that the distance
from the origin is twice as large, leading to the following characteristic polynomial

(s+ 8+ 8i)(s+ 8− 8i) = s2 + 16s+ 128

The characteristic polynomial of the Kalman filter is given by

det(sI − (A− LC)) =
∣∣∣∣s+ 0.5 l1
−1 s+ l2

∣∣∣∣ = s2 + (0.5+ l2)s+ 0.5l2 + l1

Identification of coefficients yields

L =
120.25

15.5


5.10 a. From the block diagram we see that

X1 =
1
s

K1U

X2 = K2
1
s

X1

X3 =
1
s

X2

which gives

ẋ1 = K1u
ẋ2 = K2 x1

ẋ3 = x2

y = x3

In matrix form we get

ẋ =

 0 0 0
K2 0 0
0 1 0

 x+

K1
0
0

 u

y =
0 0 1

 x
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b. The feedback law is given by
u = krr− K x

The closed-loop system becomes

ẋ = Ax+ B(krr− K x) = (A− BK)x+ Bkrr

The poles of the closed-loop system are given by the eigenvalues of A − BK , i.e.,
the roots of the closed loop characteristic equation

det(sI − (A− BK)) = det

s+ K1k1 K1k2 K1k3
−K2 s 0

0 −1 s


= s3 + K1k1s2 + K1 K2k2s+ K1 K2k3 = 0

The poles of the closed loop system are given by the eigenvalues of A − BK , i.e.
the roots of the closed loop characteristic equation

(s+ 0.5)3 = s3 + 1.5s2 + 0.75s+ 0.125 = 0

One immediately obtains the solution

k1 =
1.5
K1

k2 =
0.75
K1 K2

k3 =
0.125
K1 K2

5.11 The augmented system becomes

d
dt

x1
x2
x3

 =

 A 0
−C 0


x1

x2
x3

+

B
0

 u+
0

1

 r

=

 0 1 0
0 0 0
−1 0 0

︸ ︷︷ ︸
Ae

x1
x2
x3

︸ ︷︷ ︸
xe

+

0
1
0

︸ ︷︷ ︸
Be

u+

0
0
1

︸ ︷︷ ︸
Br

r

We seek Ke =
k1 k2 k3

 such that

det(sI − (Ae − Be Ke)) = (s+α)(s2 + 2ζωs+ω2)

Insertion of Ae, Be and Ke into the above expression yields

s3 + k2s2 + k1s− k3 " s3 + (α + 2ζω)s2 + (ω2 + 2ζωα)s+αω2

Identifications of coefficients now yields

k1 = ω2 + 2ζωα
k2 = α + 2ζω
k3 = −αω2

5.12 The estimation error x̃ fulfills ˙̃x = (A − LC)x̃. where L =
l1 l2

T
. The char-

acteristic equation of the estimation error becomes

det(sI − (A− LC)) = s2 + (4+ l2)s+ l1 + 2l2 + 3 = 0

The desired characteristic equation is

(s+ 4)2 = s2 + 8s+ 16 = 0

Identification of coefficients yields l1 = 5, l2 = 4.
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5.13 a. The characteristic equation of the closed loop system is given by

det
(
sI − (A− BK)

)
=

∣∣∣∣s+ 4+ k1 3+ k2
−1 s

∣∣∣∣ = s2 + (4+ k1)s+ 3+ k2 = 0

The desired characteristic equation is

(s+ 4)2 = s2 + 8s+ 16 = 0

Which yields k1 = 4 and k2 = 13. The control law becomes

u = −k1 x1 − k2 x2 = −4x1 − 13x2

b. The states shall be estimated by means of a Kalman filter, i.e.

dx̂
dt
= Ax̂+ Bu+ L(y− Cx̂)

For x̃ we have
dx̃
dt
= (A− LC)x̃

Determine L such that all eigenvalues of the matrix A− LC are placed in λ = −6.

det(λI − A+ LC) = λ2 + (4+ l1 + 3l2)λ+ 3+ 3l1 + 9l2

= (λ+ 6)2 = λ2 + 12λ+ 36

Identify the coefficients and solve for l1 and l2:{
4+ l1 + 3l2 = 12
3+ 3l1 + 9l2 = 36

[

{
l1 + 3l2 = 8
l1 + 3l2 = 11

The system of equations lacks solution, see the comment below.

c. The states are to be estimated by a Kalman filter, for which the eigenvalues of
A− KC shall be chosen such that

λ2 + (4+ l1 + 3l2)λ+ 3+ 3l1 + 9l2 = (λ+ 3)2 = λ2 + 6λ+ 9

Identifying coefficients and solving for l1 and l2 yields{
4+ l1 + 3l2 = 6
3+ 3l1 + 9l2 = 9

[

{
l1 + 3l2 = 2
l1 + 3l2 = 2

This leaves only one equation, which implies that there exists infinitely many
solutions, e.g. l1 = 2, l2 = 0 or l1 = 0, l2 =

2
3 etc.

The drawback of the proposed observer pole placement is that it yields an es-
timation slower than the closed loop system. This does not affect the response
to reference changes, which is governed by the poles of the closed loop system.
However, the handling of process disturbances becomes slower.

Comment
An inspection of the system’s observability shows that

det Wo =

∣∣∣∣∣ C
C A

∣∣∣∣∣ =
∣∣∣∣∣ 1 3
−1 −3

∣∣∣∣∣ = 0
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I.e. the system is not observable. The transfer function of the system is given by

G(s) = C(sI − A)−1 B = s+ 3
s2 + 4s+ 3

=
1

s+ 1

The eigenvalue −3 corresponds to a non-observable mode. The mode is, however,
controllable, which follows from the canonical controllable form realization of the
system. The characteristic equation of A− LC can be written

det(λI − A+ LC) = (λ+ 3)(λ+ l1 + 3l2 + 1)

This means that the Kalman filter has to estimate the non-observable mode with
its own speed. I.e. (at least) one of the eigenvalues of A−LC must be placed in −3.
This explains the failure to compute a Kalman filter when the eigenvalues were
to be placed in −6 and a success when they were to be placed in −3. Note that in
cases such as this one, the result is either that there does not exist a solution L
to the Kalman filter problem, or that it exists infinitely many solutions. When the
system is observable, there exists a unique solution L to the Kalman filter.
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6.1 a. The frequency function of the controller is given by

GR(iω) = K
(

1+ i(ωTd −
1

ωTi
)

)

The gain and phase shift for a frequency ω are directly obtained from the gain
function A(ω) and phase function φω of the controller, respectively.

A(ω) = pGR(iω)p = K
√

1+ (ωTd −
1

ωTi
)2

φ(ω) = arg GR(iω) = arctan(ωTd −
1

ωTi
)

b. We immediately realize that the gain function A(ω) has a unique minimum for
Im A(iω) = 0, which means that

ωmin =
1

√
TiTd

At this frequency the gain and phase shift are given by

A(ωmin) = K
φ(ωmin) = 0

Note that the phase shift is negative for ω < ωmin (phase lag) and positive for
ω > ωmin (phase lead).

6.2 a. The gray gain curve is identical to the nominal one, except that it is raised by a
factor 4. This is thus the case where K has been multiplied by 4. Observe that the
gray phase curve is not visible in the plot since it coincides with the solid black
phase curve. The dotted gain curve differs from the nominal (solid black) curve at
low frequencies, for which it is lower. This indicates that Ti has been increased,
resulting in decreased low frequency gain. Also note that the phase curve has been
raised for low frequencies. The last (dashed) curve apparently corresponds to the
case where Td has been increased. This is further indicated by the factor 4 raise
of the gain curve for high frequencies. Also for this case, one can notice a certain
increase in the phase, although for somewhat higher frequencies.
The gray step response is faster and less damped than the nominal (solid black)
one. This is a characteristic sign of an increased gain K . The corresponding Bode
plot confirmingly shows that the cutoff frequency, ω c, has increased (faster), while
the phase margin has decreased (less damped). The dotted step response features
a slow mode both in the reference- and load disturbance responses. Observe the
relatively fast increase in the reference response to approximately 0.8, followed
by a slow convergence to 1. This must be due to decreased integral action. The
integral time Ti has thus increased in this case. The corresponding Bode plot
shows that ω c is virtually unchanged. This is seen in the step response by the
fact that the first part has approximately the same speed as the nominal case,
whereas the following slow settling is due to the decreased low frequency gain. The
last (dashed) step response obviously corresponds to an increase of the derivative
time Td. The reference response is subject to an fast initial increase, followed by
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a somewhat slower settling. This is seen in the Bode plot by the fact that the
high frequency gain has increased, while the low frequency gain has remained
unchanged. The load response is somewhat slower and more damped than in the
nominal case.

b. The gray gain curve is lowered by a factor 2 in comparison to the nominal (solid
black) one, corresponding to a decreased value of K . The gray phase curve conse-
quently coincides with the nominal (solid black) case. The dotted gain curve has
been increased for low frequencies, i.e. Ti has decreased. The dashed gain curve
has been lowered at high frequencies, i.e. Td has decreased.
The gray step response is slower and more damped than the nominal (solid black)
one. This indicates that K has decreased, since neither a decrease in Ti nor Td
would yield a more damped step response. This is further confirmed by the Bode
plot. The only case where ω c has decreased is when K has decreased. It is also
the only case for which the phase margin has increased. The two remaining step
responses are both less damped than the nominal one. In order to determine which
of these corresponds to a decrease of Ti, we look at the corresponding Bode plot
(the dotted one). This shows that the cutoff frequency ω c has increased somewhat
compared to the other nominal case. The dashed Bode plot, however, shows that
the decrease of Td has not changed ω c. The dotted step response is initially
somewhat faster than the nominal (solid black) one, whereas the dashed one is
initially approximately as fast as the nominal one. This implies that the dotted
step response corresponds to a decrease in Ti, while the dashed one corresponds
to a decrease in Td.

6.3 The transfer function of the process is given by

GP =
C

Js+ D

and the transfer function of the PI controller is given by

GR = K
(

1+ 1
sTi

)

We can now write down the closed loop transfer function Gcl as

Gcl =
GRGP

1+ GRGP

The characteristic polynomial is the denominator of Gcl

s2 +
D + CK

J
s+ CK

JTi

and the desired characteristic polynomial is

s2 + 2ζωs+ω2

Identification of coefficients yields{
K = 2ζω J−D

C
Ti =

2ζω J−D
ω2 J

6.4 The transfer function of the process, Gp, is given by

Θ = GP I = ki

Js2 + Ds
I

and the transfer function of the PID controller, GR, is given by

I = GR(Θref − Θ) = K
(

1+ 1
sTi

+ sTd

)
(Θref − Θ)
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where Θref is the Laplace transform of the reference value of θ . The transfer
function of the closed loop system, G, is thus given by

Θ = GΘref =
GRGP

1+ GRGP
Θref

The characteristic polynomial is given by the denominator of G and is

s3 +
D + K kiTd

J
s2 +

K ki

J
s+ K ki

JTi

We hence arrive at the polynomial equation

(s+α)(s2 + 2ζωs+ω2) = s3 + (α + 2ζω)s2 + (2αζω +ω2)s+αω2

Identification of coefficients yields the equations
D+K kiTd

J = α + 2ζω
K ki
J = 2αζω +ω2

K ki
JTi

= αω2

from which one can calculate the sought controller parameters
K = J

ki
(2αζω +ω2)

Ti =
2ζ
ω +

1
α

Td =
α+2ζω−D/J

2αζω+ω2

6.5 a. The transfer function of the controller is

Gr(s) = K(1+ 1
sTi
) = (1+ 1

s
) =

s+ 1
s

The low frequency asymptote becomes

Gr(s) (
1
s

I.e. the gain curve is a straight line with slope = -1 and arg Gr(iω) = −90○. The
slope of the gain curve increases to 0 at the corner frequency ω1 = 1.
The high frequency asymptote is Gr(s) ( 1 with pGr(iω)p = 1, i.e. slope = 0 and
arg Gr(iω) = 0. The corresponding Bode plot is shown in Figure S6.1.

b. The transfer function of the controller is

Gr(s) = K(1+ Tds) = 1+ s

The low frequency asymptote becomes Gr(s) ( 1, i.e. the gain curve is a straight
line with magnitude 1 and slope = 0 and the phase curve is described by
arg Gr(iω) = 0○. The slope of the gain curve increased to+1 at the corner frequency
ω1 = 1.
The high frequency asymptote is given by Gr(s) ( s, i.e. the slope of the gain curve
is +1 and the phase curve is described by arg Gr(iω) = +90○. The corresponding
Bode plot is shown in Figure S6.2.

6.6 With the Ziegler-Nichols frequency method, an oscillation is generated at the
frequency ω0, where the phase shift of the process is −180○. This frequency is
given by

−2 arctan 20ω0 − 9ω0 = −π

Numerical solution gives ω0 ( 0.1 rad/s.
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Figure S6.1 Bode plot of a PI controller with K = 1 and Ti = 1.

The process gain at ω0 is
1

1+ 202ω2
0
= 0.2

The critical gain Kc becomes
Kc =

1
0.2

= 5

and the period time is
To =

2π
ω o

= 63

The controller parameters become{
K = 0.45Kc = 2.25
Ti = To/1.2 = 53

6.7 a. Laplace transform of Martins dynamics give

sX = −
1
30

X + 1
15

U

Y = X

and the transfer function Y = GPU becomes

GP =
2

30s+ 1

The process is controlled by a PI controller, U = GR(R − Y ) where

GR = K(1+ 1
Tis
) = K Tis+ 1

Tis

The controller parameters K and Ti should be chosen such that the closed loop
transfer function Y = Gcl R has its poles in −0.1. The transfer function from R to
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Figure S6.2 Bode plot of a PD controller with K = 1 and Td = 1.

Y is

Gcl =
GPGR

1+ GPGR
=

K Tis+ 1
Tis

· 2
30s+ 1

1+ K
Tis+ 1

Tis
· 2

30s+ 1

=
K(Tis+ 1)2

Tis(30s+ 1) + K(Tis+ 1)2

where the denominator polynomial has the same roots as

s2 +
2K + 1

30
s+ K

Ti15

These roots should be −0.1, i.e., the same as for

(s+ 0.1)2 = s2 + 0.2s+ 0.01

This is true if the coefficients for the polynomials are equal, i.e.,

2K + 1
30

= 0.2

K
Ti15

= 0.01

The controller parameters thus become

K = 2.5
Ti = 16.7

b. When using Ziegler-Nichols frequency method, an experiment is performed using
feedback with a P controller. The gain is increased until the system starts oscillat-
ing (stability boundary). The Bode diagram of the process can be thought of as the
Bode diagram for the loop transfer function, when the controller is a P controller
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with a gain of 1. When the gain is increased, the gain curve in the Bode diagram
will move upwards, whereas the phase will remain unaffected. The system will
start to oscillate when the phase margin becomes 0. In the figure it can be seen
that this will happen when the cutoff frequency is 0.3 rad/s, since the phase curve
crosses −180○ at this frequency. This is the resonant frequency, with which the
system will oscillate. For this frequency, the gain is equal to 0.2. Thus, a gain of 5
is needed in order for the system to start oscillating with the resonant frequency.
According to the collection of formulae, we have

K = 0.45K0

Ti = T0/1.2

where K0 is the gain and T0 the period time of the oscillation. With

K0 = 5

T0 =
2π
0.3

= 20.9

we get the controller parameters K = 2.25 and Ti = 17.4.

6.8 See fig. S6.3.
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Figure S6.3 Step response for the system in assignment 6.8 with some interesting lines
included.

Ziegler-Nichols step response method: With the customary notion we obtain a = 0.4
and b = 1.1. The controller parameters become K = 1.2/a = 3, Ti = 2b = 2.2 and
Td = b/2 = 0.55.
Ziegler-Nichols frequency method: The Nyquist curve intersects the negative real
axis in −0.4 for ω = 1.3 rad/s, which yields T0 = 2π/ω = 4.8 and K0 = 2.5. The
controller parameters become K = 0.6K0 = 1.5, Ti = T0/2 = 2.4 and Td = T0/8 =
0.6.
The Lambda method: By drawing the tangent to the step response, an approx-
imation of the dead time is obtained, L ( 1.1s. The step response has reached
63% of its final value after approximately 2.7s. The time constant thus becomes
T = 2.7 − 1.1 = 1.6s. The static gain is K P = 1. With λ = T, we get the PI
controller parameters

K =
1

Kp

T
L + λ

( 0.6

Ti = T = 1.6s
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For a PID controller, we get the parameters

K =
1

Kp

L/2+ T
L/2+ λ

= 1

Ti = T + L/2 = 2.15s

Td =
T L

L + 2T
= 0.4s

6.9 a. The step response of the system is shown in Figure S6.4.
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1

t
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Figure S6.4 Step response of G(s) = e−s/(s+ 1).

From the figure we obtain (with the customary notion) a = b = 1. This yields the
controller parameters K = 1.2/a = 1.2, Ti = 2b = 2 and Td = b/2 = 0.5.

b. The resonance frequency is determined by arg G(iω0) = − arctanω0 −ω0 = −π .
Numerical solution yields ω0 ( 2.03, resulting in T = 2π/ω0 = 3.1.
Further, K0 = 1/pG(iω0)p = 2.26, which gives K = 1.4, Ti = 1.5 and Td = 0.39.

c. From the step response in subproblem a, we get the process parameters K P = 1,
L = 1 and T = 1. This gives the controller parameters

K =
1

Kp

L/2+ T
L/2+ λ

= 1

Ti = T + L/2 = 1.5

Td =
T L

L + 2T
( 0.33

103



Solutions to Exercises 6. Design methods

6.10 a. The figure does not allow for any greater precision. Draw the tangent of the step
response where the derivative attains a maximum and study the intersection of
the tangent and the two coordinate axis. The parameter a is given by the distance
between 0 and the intersection with the vertical axis, whereas b is given by the
distance between 0 and the intersection with the horizontal axis. In our example
we have a = 0.65 and b = 4. From the table we obtain the following controller
parameters: K = 1.9, Ti = 8 and Td = 2.

10 20 30 40

−0.5

0

0.5

1

t

y(t)

b. The critical gain Kc is the gain which causes the Nyquist curve to pass through
-1. In our case we have Kc = 1/0.55 = 1.8. The critical period T0 corresponds to
the frequency at ’o’, i.e. T0 = 2π/ω = 14.6. This yields the controller parameters:
K = 1.1, Ti = 7.3 and Td = 1.8.

c. The value of K obtained from the last method is smaller than the values obtained
through Ziegler-Nichol’s methods.

6.11 Generally it is required that pGK(iω c)p > 1 in order for ω c to increase.

A The speed of the system increases, but simultaneously its robustness is reduced
since the phase margin decreases.

B pGK p < 1 for all ω , resulting in decreased cross-over frequency and speed.
C Cf. B.
D pGK p = 1 for all ω , leaving the cross-over frequency unaffected.

6.12 The process is connected in a feedback loop with a proportional controller. By
adding a compensation link one wants to decrease the ramp error of the com-
pensated system by a factor 10. Simultaneously, a small decrease in robustness
(phase margin) is accepted, resulting in a certain decrease of the system’s transient
behavior.
We can affect the ramp error by introducing a phase lag compensation link

Gk(s) = M s+ a
sM + a

Assuming that the system is stable, the resulting ramp error becomes

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s · 1
1+ Gk(s)GP(s)

· 1
s2

= lim
s→0

(sM + a)(s+ 1)(s+ 2)
s(sM + a)(s+ 1)(s+ 2) + K M(s+ a)

=
2

K M

By choosing M = 10 (K = 1) the ramp error is reduced to 0.2.
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Now it remains to decide a value for a. The phase lag link contributes to a phase
lag in the open loop. The phase lag is largest around the frequency ω = a/

√
M. In

order not to compound the transient behavior of the closed loop system excessively,
a must be chosen such that the phase around the cross-over frequency is left
unaffected. This can be achieved by choosing a adequately small. However, a
overly small value of a results in a long time before the ramp error decreases to
0.2. Let ω c denote the cross-over frequency of the uncompensated system. At this
frequency, the compensation link has a phase contribution

arg Gk(iω c) = arctan ω c

a
− arctan Mω c

a

A simple rule of thumb is to choose a = 0.1ω c. In our example it means that the
compensation link contributes with a phase shift of

arg Gk(iω c) = arctan 10− arctan 100 ( −5.1○

The crossover frequency may be determined numerically according to

pGP(iω c)p =
1

ω c
√

1+ω2
c
√

4+ω2
c
= 1

which gives ω c ( 0.45-
The compensation link thus becomes

Gk(s) = 10 s+ 0.045
10s+ 0.045

=
s+ 0.045
s+ 0.0045
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Figure S6.5 Bode plot of the uncompensated open loop system (black line) and compensated
open loop system (gray line) in assignment 6.12. K = 1 for both cases.

In Figure S6.5 Bode plots for both the uncompensated open loop system KGP(s)
and the compensated open loop system KGk(s)GP(s) are shown.
The compensation link alters the transient behavior of the system. Figure S6.6
shows how the overshoot of the step response has increased, compared to the
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Figure S6.6 Step responses of the uncompensated closed loop system (solid line) and the
compensated closed loop system (dashed line) in assignment 6.12.

uncompensated system. Also the settling time has increased, partly due to the
slow mode in the compensation link. The purpose of introducing the compensation
link was to decrease the ramp error. Figure S6.7 shows the error e = r− y for both
the uncompensated and compensated systems, with r = t.
As seen from the figure, the compensated system fulfills the criterion of a ramp
error less than 0.2.

0 20 40 60 80 100
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1
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t

e(t)

Figure S6.7 Ramp error of the uncompensated system (solid line) as well as the compen-
sated system (dashed line) in assignment 6.12.

6.13 Use a phase lag compensation link

Gk(s) = K N s+ b
s+ bN

The crossover frequency ω c of the uncompensated system can be read from the
Bode plot in Figure S6.8.
One can also determine ω c from the equation

pGP(iω c)p =
1.1

ω c
√

ω2
c + 1

= 1

This yields ω c = 0.84. The new cross-over frequency is chosen to be ω∗
c = 1.68.

The phase shift of the uncompensated system at the frequency ω c is

arg GP(iω c) = −90o − arctan(0.84) = −130o

In order not to decrease the phase margin, it must hold that

arg(Gk(iω∗
c )GP(iω∗

c )) ≥ arg GP(iω c)

We have
arg GP(iω∗

c ) = −90o − arctan(1.68) = −149o
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Figure S6.8 Bode plot of the uncompensated open loop system (black line) as well as the
compensated open loop system (gray line) in assignment 6.13.

For the compensation link it must hence hold that

arg Gk(iω∗
c ) ≥ 19o

From the collection of formulae we find that N = 2 is adequate. The compensation
link has its maximal phase shift at the frequency b

√
N. This shall occur at the

new cross-over frequency, i.e.

ω∗
c = b

√
N [ b = ω∗

c√
N
= 1.2

Now choose K such that ω∗
c becomes the actual cross-over frequency (observe that

pGk(iω∗
c )p = K

√
N)

pGk(iω∗
c )GP(iω∗

c )p = 1 [ K = 2.1

We thus obtain the compensation link

Gk(s) = 4.2s+ 1.2
s+ 2.4

Figure S6.8 shows the Bode plot of the uncompensated open loop system GP(s) as
well as the compensated open loop system Gk(s)GP(s). Figure S6.9 shows the step
responses of the uncompensated and compensated systems.

6.14 We choose a phase lead link

Gk(s) = K K · N s+ b
s+ bN

The specification implies that the low frequency gain shall not decrease (which
would increase the stationary error). The cross-over frequency shall increase by a
factor 3 and the phase margin shall remain unchanged.
The open loop transfer function is

G0(s) = Gk(s)G1(s) = K K · N s+ b
s+ bN

· 1
s(s+ 1)(s+ 2)
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Figure S6.9 Step response of the uncompensated closed loop system (black line) as well as
the compensated closed loop system (gray line) in assignment 6.13.
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Figure S6.10 Bode plot of the uncompensated system G1 (solid line) and compensated
system GkG1 (dash-dotted line) in assignment 6.14.

The Bode plot of G1 is presented in Figure S6.10. From this, or from numerical
calculations, the cross-over frequency is determined to ω c = 0.45 rad/s and the
phase margin is φm = 53○. The new cross-over frequency shall thus be ω∗

c =
3 ·ω c = 1.35 rad/s with unchanged phase margin. Since arg G1(iω∗

c ) ( −180○, the
phase curve must be raised approximately 50○ by Gk.
From the collection of formulae it is obtained that N = 8 gives a maximal phase
lead of approximately 50○. The phase lead is maximal at the frequency b

√
N = ω∗

c ,
yielding b = 0.48. The gain shall be unity at the new cross-over frequency ω∗

c , i.e.

pGk(iω∗
c )p · pG1(iω∗

c )p = 1

The magnitude of the compensator is pGk(iω∗
c )p = K K

√
N. Numerical calculations

give pG1(iω∗
c )p = 0.183. Hence

K K =
1

√
N · 0.183

= 1.9

The step response of the uncompensated and compensated systems, respectively,
are shown in Figure S6.11 and the ramp response is shown in Figure S6.12. Since
K K > 1 the stationary errors become smaller than before, thus fulfilling the
specifications.
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Figure S6.11 The step response of the uncompensated closed loop system (black line) as
well as the compensated closed loop system (gray line) in assignment 6.14.
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Figure S6.12 The ramp response of the uncompensated system (solid line) as well as the
compensated system (dashed line) in assignment 6.14.

6.15 From the Bode plot of Go(s) (see Figure S6.13) we obtain φm = 20○ and ω c =
0.7 rad/s. Unchanged speed necessitates a compensation link which does not affect
the cross-over frequency. We hence need a phase lead of ∆φ = 30○ at ω = ω c =
0.7 rad/s. We utilize a phase lead compensation link

Gk(s) = K N s+ b
s+ bN

1. The sample curves in the collection of formulae yield N = 3.
2. b

√
N = ω c [ b = 0.7√

3 = 0.40

3. pGk(iω c)Go(iω c)p = K
√

N · 1 gives K =
1
√

N
= 0.58

The compensation link thus becomes

Gk(s) = 0.58 · 3s+ 0.4
s+ 1.2

The system is stable, so the resulting stationary error becomes

E(s) = 1
1+ GkGo

R(s) = s(s+ 0.5)(s+ 3)(s+ bN)
s(s+ 0.5)(s+ 3)(s+ bN) + 2K N(s+ b)

R(s)

With R(s) = 1/s2 the stationary ramp error becomes

lim
s→0

sE(s) = 1.5
2K

= 1.29

which fulfills the specification. Figure S6.14 shows the step response of the system
before and after the compensation. The ramp error is shown in Figure S6.15. The
fact that the ramp error is increased by the compensation is due to K < 1.

109



Solutions to Exercises 6. Design methods

10−3

10−2

10−1

100

101

G
ai

n

10−1 100 101

−270

−180

−90

2 5 2 5

Frequency[rad/s]

Ph
as

e[
de

g]

Figure S6.13 Bode plot of Go(s) in assignment 6.15.
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Figure S6.14 Step response of the uncompensated closed loop system (black line) and
compensated system (gray line) in assignment 6.15.

6.16 We know that a phase lag compensation link dimensioned according to the rules of
thumb will decrease the phase margin by approximately 6○, which yields a certain
decrease of robustness. In order not to obtain an excessive overshoot, we start by
decreasing the gain of the process in order to increase the phase margin.
From the Bode plot of the process (see Figure S6.16) we find that G−1 has a phase
shift of −133○ at the cross-over frequency ω c = 0.7. At the frequency ω∗

c = 0.6 we
have the phase shift −133○ + 6○ = −127○ and the gain pG1(ω∗

c )p = 1.2.
By decreasing the open loop gain by a factor 1.2 we obtain the new cross-over
frequency ω∗

c and a phase margin increase of 6○. Since we cannot affect the
process gain directly, we equivalently let K = 1/1.2 = 0.83 in the compensation
link.
The main problem is to decrease the stationary ramp error to e1 ≤ 0.1. The final
value theorem gives

e(∞) = lim
s→0

sU(s) 1
1+ Gk(s)G1(s)

=

= lim
s→0

s 1
s2

(s+ a/M)s(s2 + 2s+ 2)
(s+ a/M)s(s2 + 2s+ 2) + 1.5K(s+ a)

=
2

1.5K M
≤ 0.1
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Figure S6.15 Ramp error of the uncompensated closed loop system (black line) as well as
the compensated closed loop system (gray line) in assignment 6.15.
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Figure S6.16 Bode plot of the uncompensated open loop system (black line) as well as the
compensated open loop system (gray line) in assignment 6.16.

which yields M ≥ 16. Choose M = 16. According to the rule of thumb we let
a = 0.1ω∗

c = 0.06. The chosen compensation link thus becomes

Gk(s) = 0.83 s+ 0.06
s+ 0.00375

Figure S6.17 shows the step response before and after the compensation. The ramp
errors of the uncompensated closed loop system and the compensated closed loop
system are shown in Figure S6.18.

Comment:
Since we have decreased the open loop gain we obtain a decreased cross-over
frequency and hence a somewhat slower system. In Figure S6.17 one especially
notes the slow mode which appears as the process settles. It is caused by the slow
pole of the controller in combination with the low gain. The rise time and damping
are, however, virtually unaffected. An alternative to decreasing the open loop gain,
in order to maintain the desired phase margin, would be to introduce a phase lead
compensation link.
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Figure S6.17 Step response of the uncompensated closed loop system (black line) as well
as the compensated closed loop system (gray line) in assignment 6.16.
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Figure S6.18 Ramp error of the uncompensated closed loop system (black line) as well as
the compensated closed loop system (gray line) in assignment 6.16.
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Controller Structures

7.1 The disturbance d does obviously lack influence if

G1(s)H(s) + 1 = 0 \ H(s) = − 1
G1(s)

To be a practically useful control law it is required that the disturbance can be
measured, that the model G1(s) of the heating system is a "good" description of
reality and that the inverse transfer function 1/G1(s) is practically realizable.
This means that H(s) must not contain derivatives of the signal d. The realization
of H(s) can also be problematic if G1(s) lacks a stable inverse (i.e. if G1(s) has
right half plane zeros, which is equivalent to being a non-minimum phase system).
Further, we cannot invert processes with low pass characteristics more than at
low frequencies and delays can obviously not be inverted.

7.2 A block diagram for the system is shown in Figure S7.1. Mass balance for the tank

K

P-controller ∑
Gv

Valve

GF

Feedforward

∑
GT

−1

Tank

−1

∑href u h

v

Figure S7.1 Block diagram of the level controlling system in assignment 7.2.

yields
A dh

dt
= x(t) − v(t)

Laplace transformation gives (A = 1 m2)

H(s) = 1
s
(X(s) − V(s))

The transfer function of the tank is thus

GT(s) =
1
s

a. The closed loop transfer function becomes

G(s) = GTGV K
1+ GTGV K

=
K

0.5s2 + s+ K
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The characteristic polynomial is hence

s2 + 2s+ 2K

The desired characteristic polynomial is

(s+ω)2 = s2 + 2ωs+ω2

Identification of coefficients yields {
ω = 1
K = 1

2

The transfer function form v(t) to h(t) is given by

H(s) = − GT

1+ GTGV K
V(s) = − 1+ 0.5s

s(1+ 0.5s) + K
V(s)

If v(t) is a step of amplitude 0.1 we obtain V(s) = 0.1/s. The final value theorem
gives

h(∞) = lim
s→0

sH(s) = −0.1
K

The theorem may be used since sH(s) is of second order with positive coefficients
in the denominator.

b. A PI controller has the transfer function

GR(s) = K(1+ 1
sTi
)

The closed loop transfer function becomes

G(s) = GTGV GR

1+ GTGV GR
=

K(1+ sTi)

s(1+ 0.5s)sTi + K(1+ sTi)

The characteristic polynomial becomes

s3 + 2s2 + 2Ks+ 2K
Ti

The desired characteristic polynomial is

(s+ω)3 = s3 + 3ωs2 + 3ω2s+ω3

Identification of coefficients yields 
ω = 2

3

K = 2
3

Ti =
9
2

c. The relation between the flow disturbance v and the level h is given by

H(s) = GT(GV GF − 1)
1+ GTGV GR

V(s)

To eliminate the influence of v, we choose

GF(s) =
1

GV
= 1+ 0.5s

Note that GF is not realizable. One can either cancel the derivative term or add a
low-pass filter so that the infinite gain at high frequencies is avoided.
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7.3 The closed loop system has the transfer function

(GR + K f )GP

1+ GPGR
=

(K + K f )s+ K/Ti

s2 + (3+ K)s+ K/Ti

a. The characteristic equation of the closed loop system is

s2 + (3+ K)s+ K/Ti = 0

The desired characteristic equation is

(s+ 2− 2i)(s+ 2+ 2i) = s2 + 4s+ 8 = 0

Identification of coefficients yields K = 1 and Ti = 1/8.

b. The feedforward K f affects the zeros of the closed loop system, but leaves the
poles unaffected. The poles can be placed by means of the controller H in order to
obtain adequate supression of disturbances, cf. sub-assignment a above. One can
subsequently translate the zeros by means of K f in order to e.g. reach a desired
overshoot in the reference step responses. The zero of the closed loop system is
eliminated by choosing K f = −K . With the pole placement in sub-assignment a,
which corresponds to a relative damping ζ = 1/

√
2 ( 0.7, the overshoot of the

closed loop system becomes approximately 5%.

7.4 The block diagram in assignment 7.3 can be re-drawn according to Figure S7.2.
By comparing to the block diagram in assignment 7.3 we see that H f f = H + K f
and H f b = H. Observe that manipulation of K f offers the possibility to neutralize
the derivation in H, i.e. achieve a controller which derivates the output, but not
the reference value.

H

K f

∑
GP(s)

−1H

r u y

Figure S7.2 Modified block diagram in assignment 7.3.

7.5 The system has three inputs: the reference yr and the two disturbances v1 and v2.
The transfer functions between these three signals and the output y are given by

Y =
G1G2GR1GR2

1+ G1GR1 + G1G2GR1GR2
Yr +

G1G2

1+ G1GR1 + G1G2GR1GR2
V1

+
(1+ G1GR1)G2

1+ G1GR1 + G1G2GR1GR2
V2

Let us name the three transfer functions Gyr, Gv1 and Gv2, respectively. Ideally we
would have Gyr = 1 and Gv1 = Gv2 = 0 for all frequencies. This is, however, not
achievable. Nonetheless, we can assure that it holds in stationarity, i.e. for s = 0.
For a P controller we have GR(0) = K , where K is the gain of the controller. For
a PI controller it holds that GR(0) = ∞.
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The transfer function Gyr becomes unity if GR2 is a PI controller. The transfer
function Gv1 becomes 0 if any of the controllers are PI. The transfer function Gv2,
however, is only zero if GR2 is a PI controller.
Consequently GR2 must contain an integral part in order to guarantee 0 stationary
control error. The controller GR1 can then be chosen to be a P controller. (If we
furthermore want the internal signal y1 to coincide with its reference, also this
controller would need an integral part.)

7.6 a. The closed loop transfer function is given by

Ginner(s) =
K1G1(s)

1+ K1G1(s)
=

2K1

s+ 2+ 2K1

In order to make the system 5 times as fast, the pole of the closed loop system
must be placed in s = −10, calling for K1 = 4.

b. The approximation Ginner(s) ( Ginner(0) = 0.8 yields

Gouter(s) =
GR2(s)G2(s)Ginner(0)

1+ GR2(s)G2(s)Ginner(0)
=

(K2s+ K2
Ti
)0.8

s2 + 0.8K2s+ 0.8 K2
Ti

The specification of a system 10 times slower than the inner loop calls for a pole in
s = −1. Since we deal with a second order system, we choose to locate both poles
in s = −1 (somewhat slower than the single pole case). This yields K2 = 2.5 and
Ti = 2.
A general rule when cascading controllers is to make the inner loop 5–10 times faster than
the outer loop in order to enable separation of the controller calculations for the two loops.
The actual closed loop system (without approximations) becomes

Gouter(s) =
10(2s+ 1)

s3 + 10s2 + 20s+ 10

and has poles in approximately −7.516, −1.702 and −0.7815 where the slower pole (s =
−0.7815) will be the one essentially determining the speed of the system. This corresponds
fairly well to the specified speed.

7.7 a. Since the steam flow is assumed to be constant, we can let F = 0, which yields
the following description of the dome

Y (s) = 10−3

s
M(s)

Since the controller is of P type we have M(s) = K(Yr − Y ), where Yr denotes the
reference dome level. This yields

Y (s) = K
K + 103s

Yr(s)

Since the system is linear and subject to negative feedback, a step disturbance in
the level gives rise to the same transient behavior as a step disturbance in the
reference. Hence let Yr(s) = 1

s . Inverse transformation of Y (s) yields

y(t) = 1− e−K10−3 t

The specification on the settling time of the system now yields

y(10) = 1− e−K10−2
= 0.9 [ K = 230

b. The dome and P controller are described by

Y (s) = K
K + 1000s

Yr(s) +
s− 0.01

(s+ 0.1)(1000s+ K)
F(s)
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Let Yr(s) = 0. A step disturbance in the steam flow F(s) = 1
s thus gives

Y (s) = s− 0.01
(s+ 0.1)(1000s+ K)

1
s

The final value theorem yields

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s s− 0.01
(s+ 0.1)(1000s+ K)

1
s
=
−0.1

K

and stationary error becomes

e = yr − y = −y = 0.1
K

c. Determine a feedforward link H(s) from steam flow F(s) to feed water flow M(s)
for the initial system, such that the level Y (s) becomes independent of changes in
the steam flow.
The system with feedforward H(s)F(s) is described by

Y (s) = 10−3

s
(M(s) + H(s)F(s)) + s− 0.01

s(s+ 0.1)
10−3 F(s)

=
10−3

s
M(s) + 10−3

s

(
s− 0.01
s+ 0.01

+ H(s)
)

F(s)

We want the influence from F(s) to be zero. Therefore choose H(s) so that the
expression in front of F(s) becomes zero. This criterion is fulfilled when

H(s) = −s− 0.01
s+ 0.1

which gives the desired feedforward.

7.8 The delay margin is given by
Lm =

φm

ω c

First we compute the cross-over frequency ω c as

pG0(iω c)p = pGP(iω c)GR(iω c)p =

∣∣∣∣ 2
iω c(iω c + 1)

∣∣∣∣ = 2
ω c

√
ω2

c + 1
" 1

\ ω4
c +ω2

c − 4 = 0 \ ω c =

√
−1+

√
17

2
= 1.25

Then we calculate the the phase margin φm

φm =π + arg G0(iω c) =π − π
2
− arctanω c = 0.675

We thus obtain Lm = φm/ω c = 0.54.

7.9 a. The one second delay e−s is considered part of the process.
Controller GR(s) = K
Process GP(s) =

1
s(s+ 1)

e−s

Model ĜP(s) = GP(s) =
1

s(s+ 1)
e−s

Model without delay Ĝ0
P(s) =

1
s(s+ 1)
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b. According to the block diagram the control signal is given by

U(s) = GR(s)
(

E(s) + ĜP(s)U(s) − Ĝ0
P(s)U(s)

)
The transfer function of the controller becomes

U(s) = GR(s)
1− GR(s)ĜP(s) + GR(s)Ĝ0

P(s)
E(s)

=
2

1− 2
s(s+ 1)

e−s +
2

s(s+ 1)

E(s) = 2s(s+ 1)
s(s+ 1) + 2− 2e−s E(s)

The Bode plot of the controller is shown in Figure S7.3. One notes that the Smith
predictor gives a large phase lead at the cross-over frequency of the initial system.
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Figure S7.3 Bode plot of the Smith predictor.

c.

U(s) = 2s(s+ 1)
s(s+ 1) + 2− 2e−s E(s) ( 2s(s+ 1)

s(s+ 1) + 2− 2(1− s)
E(s)

=
2(s+ 1)

s+ 3
E(s)

This is a phase lead link with N = 3.

7.10 The gain curve of the system is given by

pG(iω)p = k
ω

It is sufficient to read the value of the gain curve at a single frequency in order to
determine k. The gain is e.g. 1 at approximately ω = 4.5. This yields

1 = k
4.5

\ k = 4.5

The phase curve of the system is given by
arg G(iω) = −π/2−ω L

Now, it is sufficient to read the value of the phase curve at a single frequency in
order to determine L. The phase is e.g. −π at approximately ω = 120. This yields

−π = −π/2− 120L \ L = 0.013
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Design Examples

8.1 a. The phase curve for v = 3 knots cuts −180○ at ω o ( 0.03 rad/s. At this frequency
we have pG(i0.03)p ( 2. The gain K must hence be smaller than 0.5 in order to
yield a stable closed loop system.

b. In order to acquire the cross-over frequency ω c and phase margin φm it is required
that

pGr(iω c)G(iω c)p = 1
arg Gr(iω c)G(iω c) = φm − 180○

where Gr(s) = K(1+ TDs). This leads to the equations

K pG(iω c)p
√

1+ T2
Dω c

2
= 1

arg G(iω c) + arctan TDω c = φm − 180○

With ω c = 0.03 rad/s, φm = 60○, pG(iω c)p ( 2 and arg G(iω c) ( −180○ we obtain

Td =
tan 60○

0.03
=

√
3

0.03
( 57.7

K =
1

pG(iω c)p
√

1+ T2
dω c

2 (
1

2 · 2
= 0.25

c. If the speed suddenly increases from 3 to 7 knots, we have to turn to the gray
Bode plots in Figure 8.2. The most drastic change is that the gain curve has been
raised by a factor of 20. Additionally, the phase curve has decreased for frequencies
above 0.03 rad/s. This results in heavily reduced phase- and gain margins. A more
thorough examination shows that this in fact leads to instability of the closed loop
system. This can be seen in the Bode plot in Figure 8.2, which shows both the
nominal case v = 3 knots and the case v = 7 knots.
One way to avoid this problem is to instead choose v = 7 knots as the nominal
case for the calculation of the PD controller. This, however, means that one has to
accept a slower settling time for the slowest speed v = 3 knots. A better way is to
let K and Td depend on the speed v. This method is known as gain scheduling.

d. The transfer function from β to h can be approximated by

Ghβ (s) =
kvv
s3

From the Bode plot one can see that pGhβ (i · 0.1)p ( 0.04 for v = 3 knots =
3 · 1.852/3.6 ( 0.5144 · 3 m/s, which yields

kv (
0.13 · 0.04
3 · 0.5144

( 2.6 · 10−5
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Figure S8.1 Bode plot of the PD compensated open loop system in assignment 8.1. The
black curves show the case v = 3 knots (nominal case), while the gray curves show the case
v = 7 knots. Note that the latter case yields an unstable closed loop system.

e. The characteristic equation of the closed-loop is given by

s3 + K kvv = 0

Since not all coefficients are positive, the closed-loop system is not asymptotically
stable for any value of K . In sub-assignment a it was concluded through the
measured frequency response that the closed loop system was stable for K < 0.5.
The explanation to this apparent contradiction is found in the Bode plot which
was used in sub-assignment a: The approximation only holds for high frequencies
(ω > 0.05). For low gains, such as K < 0.5, the cross-over frequency ω c < 0.03 lies
outside the valid range of the model.
For e.g. ω < 0.03 the Bode plot shows a phase above −180○ while the simplified
model features the phase −270○ for all frequencies.

f. If x = (α̇, α, h)T and u = β we obtain the state space equations

ẋ =

0 0 0
1 0 0
0 v 0

 x+

kv
0
0

 u

With the state feedback u = −K x+ ur the characteristic polynomial of the closed
loop system becomes

p(s) = det(sI − A+ BK) = s3 + kvk1s2 + kvk2s+ kvvk3

the desired characteristic polynomial is

p(s) = (s+γω0)(s2 + 2ζω0s+ω2
0) = s3 + (γ + 2ζ )ω0s2 + (2γζ + 1)ω2

0s+γω3
0

Direct comparison gives 

k1 =
(γ + 2ζ )ω0

kv

k2 =
(2γζ + 1)ω2

0
kv

k3 =
γω3

0
kvv
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g. Here stationarity means constant height, h = href. This in turns mean that all
derivatives of h must be zero, i.e. α = 0 and α̇ = 0. When the height has reached
its correct value the control signal u = β must also be zero since the submarine
would otherwise continue to rise. Thus Kr is obtained from the equation

0 = Krhref − k1 · 0− k2 · 0− k3href

For v = 3 knots, we end up with the following result

Kr = k3 =
γω3

0
kvv

(
γω3

0·
2.6 · 10−5 · 3 · 0.5144

(
γω3

0·
4.0 · 10−5

h. At a momentary disturbance ∆h = 0.1 m the rudder angle becomes

∆β = k3 · ∆h = γω3
0

vkv
· 0.1 ( 0.2ω3

0
3 · 0.5144 · 2.6 · 10−5

Since ∆β ≤ 5○, we must have

ω0 ≤

(
5 · 3 · 0.5144 · 2.6 · 10−5

0.2

) 1
3

( 0.1

8.2 a. The oscillation frequency ω o ( 27 rad/s and critical gain Kc ( 3.6 can be read from
the Bode plot. The oscillation period is hence To = 2π/ω o ( 0.23. This yields the
PID parameters K = 0.6Kc ( 2.2, Ti = To/2 ( 0.12 and Td = To/8 ( 0.03. The
step response of the closed loop system is shown in Figure S8.2. The specifications

Figure S8.2 The step response with PID control according to Ziegler-Nichols.

are apparently not fulfilled. A PID controller (with filter factor) can be considered a
second order controller with integral action. As a matter of fact, the specifications
can be met, using a more general second order controller with integral action (see
Figure S8.3). If one tries to interpret it as a PID controller, one would end up with
a negative derivative time Td.

b. In stationarity all derivatives of the states must be zero ẋ = 0. It hence holds that{
0 = Axo + Buo = (A− BK)xo + BKr yr

yr = yo = Cxo

This yields
Kr = −

1
C(A− BK)−1 B
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Figure S8.3 The step response of the closed loop system with a second order integrating
controller.

c. With x augmented to xe = (x1, x2, x3, xi)
T we obtain

ẋe =



−
d1 + d f

J1

d f

J1
−

k f

J1
0

d f

J2
−

d f + d2

J2

k f

J2
0

1 −1 0 0
0 kω2 0 0


xe +


kmki

J1

0
0
0

 u+


0
0
0
−1

 yr

y =
0 kω2 0 0

 xe

where the reference yr has been introduces as an extra input.

d. The approximate value of ωm becomes

ωm ( −
ln 0.02

0.5 · 0.38
( 20

e. When it comes to load disturbances, the fast Kalman filter (ω o = 40) has the
best performance. It is also best when it comes to suppressing the influence of of
measurement noise. However, it is the worst choice when it comes to suppressing
the influence of noise in the control signal. The two cases ω o = 10 and ω o = 20
feature approximately the same noise sensitivity, while ω o = 10 is slower when it
comes to eliminating load disturbances. A satiable choice is thus ω o = 20.
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Interactive Comparison Between
Model Descriptions

9.1

a. The amplitude of the step response is affected, but not the time constant. The pole
is not affected. The Nyquist diagram keeps its shape, but each point on the curve
moves radially from the origin. In the Bode diagram, the gain curve changes in
the y direction while the phase curve is unchanged.
Since the control signal is a unit step, K is given by the stationary value of the
measurement signal in the step response. In the Nyquist diagram, K is given from
the starting point on the positive real axis. In the Bode diagram, K is given from
the gain curve where ω → 0.

b. The amplitude of the step response is not affected, but the time constant is given
by T. The pole is in s = −1/T, which means that a large time constant gives a pole
close to the origin, whereas a short time constant gives a pole far away from the
origin. In the Bode diagram, the corner frequencty is 1/T, and it thereby varies
when T varies. No change is visible in the Nyquist diagram, but the frequency
varies along the curve.
Suppose that we have two processes with different values of T. Then, we can
always find two frequencies such that

G(iω1T1) =
K

1+ iω1T1
= G(iω2T2) =

K
1+ iω2T2

i.e., all points that are on the first Nyquist curve are also on the second one, but
at another frequency.

c. A variation in L corresponds to a translational movement of the step response.
We can not represent a dead time in a singularity diagram. The gain curve in
the Bode diagram is not affected, since pe−iω Lp = 1, but the phase is reduced. For
each frequency point in the Nyquist diagram, the distance to the origin remains
unchanged, but the phase decreases. Since the phase goes towards −∞ when
ω →∞, the Nyquist curve has the spiral shape.

9.2

a. The changes are the same as in problem 1a.

b. The changes are analogous to the ones in problem 1b. When T1 ≫ T2, the step
response is similar to the one in problem 1a, with T ( T1. The Bode and Nyquist
diagrams are also similar to the ones in problem 1a for low frequencies. Thus, you
can in many cases approximate the transfer function by

G(s) = K
(1+ sT1)(1+ sT2)

(
K

(1+ sT1)

c. If the zero is far away from the origin, the representations are not significantly
affected. If the zero is negative and is close to the origin, there is a large overshoot
in the step response. If the zero is positive and close to the origin, the step response
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will initially go in the wrong direction. If the zero is positive it will give a positive
contribution to the phase.
When T3 < 0, e.g., when the zero is in the right half plane, the process is hard to
control. You can imagine that it is hard for a controller to act in the right way when
a control signal change makes the measurement signal go in the wrong direction
initially. The phenomenon could be understood by writing the transfer function in
the following way

G(s) = K(1+ sT3)

(1+ sT1)(1+ sT2)
=

K
(1+ sT1)(1+ sT2)

+
sKT3

(1+ sT1)(1+ sT2)

Thus, the transfer function consists of two terms, one that is the transfer function
that we had in problem 2a, and one that is the same transfer function, but
multiplied with sT3. Thus, the second term is proportional to the derivative of the
measurement signal we would have obtained if we did not have any zero. If T3 < 0,
this term will give a negative contribution, which explains that the step response
initially goes in the wrong direction.

9.3

a. The frequency ω affects the speed of the system, but not the shape of the step
response. Variations in ω moves the poles radially from the origin. In the Bode
diagram, ω does not affect the shape, but only the location of the corner frequency.
The shape of the Nyquist curve is not affected, but the frequencies are moved
along the curve.

b. The relative damping ζ does not affect the speed of the step response, but the
shape. A small value of ζ gives an oscillatory and poorly damped response. A
small value of ζ gives a large resonance peak in the Bode diagram. In the Nyquist
diagram, you get a big increase of gain and fast phase shift around ω.
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