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1. Transient Response

2. Step Response Analysis



Transient Response



Solution to State Space Equation

Given a system on state space form

x = Ax + Bu
y = Cx+ Du

The solution, y(wn by \

t
y(t) = Ce™x(0) + C / T Bu(r)dr + Du(t)
0

Initial state,

] ] Weighted integral of Direct term, often
uninteresting except . .
) the control signal, neglectable in
when the controller is . . .
Interesting part practical systems

initialized



Impulse Response

Shows how the system responds when the input is a short pulse, i.e., a
Dirac function

Hence

Not so common in technological applications, can we think of other
applications?



Example - Impulse Response

Let the transfer function of the system be:

2
Glg)= s2 43542
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Step Response

Shows how the system responds when the input is a step, i.e.,

1 t>0
u(t) = 3
0 t<O

The Laplace transformation is

U(s) = / e *tu(t)dt = / e Stdt = ! [efSt]go =
0 0 S

Very common in technological applications



Example - Step Response

Let the transfer function of the system be:
2

Glg)= s24+3s+2
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Step Response Analysis




Step Response

From the last lecture, we know that if the input u(t) is a step, then the
output in the Laplace domain is

It is possible to do an inverse transform of Y(s) to get y(t), but is it
possible to claim things about y(t) by only studying Y(s)?

We will study how the poles affects the step response. (The zeros
will be discussed later).
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Initial and Final Value Theorem

Let F(s) be the Laplace transformation of f(t), i.e., F(s) = L(f(t))(s).
Given that the limits below exist!, it holds that:

Initial value theorem  lim;_ f(t) = lims_ 1o SF(5)

Final value theorem  lim;—, oo f(t) = lims_,0 sF(5s)

For a step response we have that:

lim y(t) = slm) sY(s) = lim sG(s)1 = G(0)

t—+oo s—0 S

1Q: When can we NOT apply the Final value theorem?
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Some useful matlab commands

>> s=tf(’s’); % enables to use s as transfer fcn
>> z=0.2; w0=5;

>> G= w0™2 / (872 + 2%z*wO*s + w0™2 )

>> step(G)

>>

>> pzmap(G) % pole-zero map

Step Response . Pole-Zero Map
1
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First Order System

Singularity Chart Step Response (K=1)
1

0.5 .
T=1 T=8r =8 —
E 0 x X N
- >

=03 |F -

L L

One polein s =—-1/T

Step response:
1 K 1

Y($) =603 = sagsm
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First Order System

Singularity Chart Step Response (K=1)
1
0.5} =
T=1 T=8r =8 —
E 0 X X N
- >
—0.5 | 8
— | L
-15 -1 -05 0 05
Re t
K
G(s) =
() 1+sT
Final value:
li (t) = limsY(s) = li K =
tﬁlTooy 75[1105 ° 75[12)5 S(]_—|—ST)7
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First Order System

Singularity Chart Step Response (K=1)
1
0.5 .
T=1 T=8r =8 —
E 0 x X N
- >
=03 |F -
L L
-15 -1 -05 O 0.5
Re t
K
G(s) =
() 1+sT

T is called the time-constant:
y(T)=KQ—-eT/T)=K@1—-e ')~ 063K

i.e., T is the time it takes for the step response to reach 63% of its final
value
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First Order System

Singularity Chart Step Response (K=1)
1
0.5 .
T=1 T=8r =8 —
E 0 x X N
- >
=03 |F -
_ | |
-15 -1 -05 O 0.5
Re t
K
G(s) =
() 1+sT

Derivative at zero:
2K K

imy(t) = lim s-sY(s)=_lm T em =7
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Second Order System With Real Poles

Singularity Chart Step Response (K=1)
1
1 =
0.5 .
T=1 T=2 —
E W Na
- 0 > 05| 3
=03 |F -
_ L L 0 L L
-15 -1 -05 O 0.5 0 5 10 15
Re t
K
G(s) =

(]. +ST1)(1 +ST2)
Poles in s = —1/T; and s = —1/T,. Step response:
—t/Ty _ 7 —t/T;
y(t) = K(l_%)’tzo 7T
Kl—et/T—Let/T) >0 T1=To=T
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Second Order System With Real Poles

Singularity Chart Step Response (K=1)
1
05| - di
T=1 T=2 —
E * N
= 0 * = 05| |
=03 |F 3
o ] ] 0 ] ]
-15 -1 -05 O 0.5 0 5 10 15
Re t
K
G(s) =
(1 + ST1)(1 + ST2)
Final value:
. . . sK
lim = lim sY(s) = lim =K

t—+oo  s—0 s—05(1 4 sT1)(1+ sT>)
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Second Order System With Real Poles

Singularity Chart Step Response (K=1)
1
1 =
0.5 .
T=1 T=2 —
E W Na
- 0 > 05| 3
=03 |F -
_ L L 0 L L
-15 -1 -05 O 0.5 0 5 10 15
Re t
K

¢()= Arsma )

Derivative at zero:
s2K

fimy(t) = tim_s-s¥(s) = lm Aremyassy)  °
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Second Order System With Complex Poles

Kw?
s% + 2Cwos + w§’

G(s) = 0<¢<1

Relative damping (, related to the angle ¢
¢ = cos(¢p)

Singularity Chart

1
osf X, .
E 0 4 ~
—05 | ‘ < ' i
T !
1 0 1

Re 15



Second Order System With Complex Poles

Kw?
s% + 2Cwos + w§’

G(s) = 0<¢<1

Inverse transformation for step response yields:

_ L
1-(2

1 —Qwot o: 3
=K (l—ﬂe Cwot gin (wo 1—(2t+arcsm(\/1—C2))) ,t>0

y(t) =K (1 — e~ Wt gin (wox/l — (%t + arccosC))
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Second Order System With Complex Poles

Kw?
s% + 2Cwos + w§’

G(s) = 0<¢<1

Inverse transformation for step response yields:
1
y(t) =K (1 — \/ﬁe*@"’tsin (wm/l — G2t + arccos())
1
=K (1 — \/ﬁe*wotsin (wox/l — (%t + arcsin(y/1 — <2))) ,t>0

Exercise: Check of correct starting point of step response.

Step Response

y(0) =K <1 — ;eo sin (wo V1 — €20 + arcsin(/1 — CZ))> 1.5

e T
1
:K<1*7?<2‘m> 0.5 N
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Second Order System With Complex Poles

2
Kuwg

G(s)= 55—, 0<(<1
(5) s% + 2¢wos + wd ¢
Changing fq wq
Singularity Chart Step Response (K=1)
| | |
1k X wy=1.5 ]
X Wwo &= 1
X W = 0.5 —
£ 0 )
x =
x
. | S i
L L
-1 0 1
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Second Order System With Complex Poles

G(s) =

Changing damping ¢

Im

Singularity Chart

2
Kwg

s2 + 2Cwos + wi’

0<(¢<x1

Step Response (K=1)

T T 1.5
x(=203 N
x ¢=0.7
x (=09 1F
=
X 0.5
X
X ]
: 0
-1 0
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This lecture

1. Transient Response

2. Step Response Analysis

Next lecture

e Frequency Analysis
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