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Chapter 1

Introduction

The purpose of this lab is to give an introduction to a simple dynamical sys-
tem, models, signals, and introduce the MinSeg robot and associated soft-
ware. By performing experiments on a small DC-motor, some of its phys-
ical parameters will be identified (also called estimated), and a first-order
differential equation describing the dynamical behavior of the motor will
be developed. As an alternative approach, a model is also developed using
a simple step-response experiment.

DC-motors are a central part of many products and mechatronic designs,
and having a model of a motor is important for dimensioning, simulations,
development of controllers, performance analysis etc.

Figure 1.1: Robotic hand using 15 DC-motors to position 5 fingers inde-
pendently. Having good models of the motors is crucial when
developing a high-precision control system for the hand.
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1.1 Hardware set-up

The lab is based on three main hardware components.

To begin with, we have a standard desktop computer. This computer is
used to automatically develop and deploy code using MATLAB and SIMULINK

models.

To supply power to the DC-motor and perform measurements of motor an-
gles, we use a board with an Arduino micro-controller which runs the auto-
generated code. It also communicates with the desktop computer and thus
allows us to look at the measurements.

The motor we experiment with is a simple DC-motor with two wheels at-
tached. The motor is normally part of a LEGO Mindstorms kit.

The Arduino together with the motor and wheels is called the MinSeg.

1.2 Trouble shooting

The wheels turn slowly and/or erratically Make sure the tires do not rub
against the motor. You can pull the wheels apart as they slide on the wheel
axis.

Complaints about COM port or connection when downloading to board
Try again. If it still fails, disconnect USB-cable and connect it again.

Complaints about OUT OF MEMORY Save your model and restart MAT-
LAB.

The motor does not run Have you reinstalled the motor jumper after cur-
rent measurements?
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Chapter 2

Preparation

The questions below, and all questions throughout the document marked
as Preparation must be done before attending the lab. Note that there are
additional preparation exercises in Chapter 3.

Solutions to all questions should be available upon request from the lab
assistant, and the preparation exercises in Chapter 3 are preferably written
in this printed documented.

The scheduled time spent with the laboratory equipment is only a small
part of the complete lab, as a major part is spent on the theoretical mate-
rial during preparations. When the lab starts, it is assumed you have done
all preparations, and have a clear idea of the tasks that will be performed
during the lab.

Preparation 1 Read Section 2.1 and 2.6 in the course book by Ljung & Glad.

Preparation 2 Verify (by differentiation, not by solving it from scratch!) that
y(t ) = K(1 − e−t/T)c is the solution to the first-order differential equation
T ẏ(t ) = −y(t )+Ku(t ) for an input switching from u(t ) = 0 to u(t ) = c at
t = 0 (i.e., a step-response of amplitude c), with initial condition y(0) = 0.

Preparation 3 The constant K in the form above is called the static gain of
the system and describes how much the system amplifies constant inputs in
steady-state (i.e., when derivatives are 0 and y(t ) has converged to its sta-
tionary value). Given the differential equation with input u(t ) = c and solu-
tion as above, show that the output y(t ) converges to Kc when t →∞. Do this
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using two different strategies. One approach where you simply analyze the
solution given above, and another approach where you study the differential
equation and exploit the fact that you know the value of ẏ(t ) in steady-state.

Preparation 4 The constant T in the first-order differential equation in the
above form is called the time-constant and descibes how fast the system re-
acts to changes on the input. Given y(t ) = K(1−e−t/T)c, what value will y(t )
have when t = T?

Preparation 5 The time-constant is more generally defined as the time it
takes before the output reaches a certain percentage of its final value, when
the input has made a step change. To be consistent with the definition in the
first-order system above, what percentage is this?

Preparation 6 Sketch the function y(t ) = K(1−e−t/T)c for K = 3, T = 10 and
c = 2. Particularly specify the value attained when t = 10.

Preparation 7 An oven placed in a room with temperature 0◦ is reasonably
well described by the differential equation T ẏ(t ) =−y(t )+Ku(t ) where y(t )
is the oven temperature and u(t ) is the supplied power. In an experiment
performed to identify T and K, the oven was turned on with u(t ) = 1000W
at t = 4 (not at t = 0!), and the oven temperature was measured. Based on
the results seen in Figure 2.1, what is the time-constant T and static gain K
of the oven? Hint: What percentage of the final temperature should have
been reached T minutes after the oven was turned on)

Preparation 8 Write the differential equation aẏ(t )+ by(t ) = cu(t ) in the
form T ẏ(t ) = −y(t )+Ku(t ), i.e., express the time-constant T and gain K in
terms of a, b, and c.

Preparation 9 Read the complete lab-pm. There are some theoretical ques-
tions in the pm which you are supposed to complete as preparation.

Preparation 10 Print this document. You must bring a physical copy to the
lab.
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Figure 2.1: Step-response experiment of an oven. At t = 4 the input is
changed from 0 to 1000, and the oven temperature is recorded.
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Chapter 3

The lab

As explained above, the lab will primarily consist of experimentation and
data collection, using theoretical results and strategies derived during your
preparation.

Items labeled Preparation are questions you are supposed to solve and fill
out before attending the lab.

Items labeled Task are performed when attending the lab and you have ac-
cess to the hardware.

3.1 DC-motor modeling

Consider a standard DC-motor model as depicted in Figure 3.1.

The electrical and mechanical differential equations governing the dynam-
ics are

uA(t ) = L
di (t )

d t
+Ri (t )+kvω(t ) (3.1)

kai (t ) = Jω̇(t )+ f ω(t ) (3.2)

where uA(t ) is the voltage applied to the motor, i (t ) is the current in the
motor, and ω(t ) = θ̇(t ) is the angular velocity of the motor shaft. The prod-
uct kai (t ) is the torque generated by the motor, and f ω(t ) is the velocity
dependent friction in the motor. The parameters in the model are
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Figure 3.1: DC-motor. When a voltage uA(t ) is applied on the motor, a cur-
rent i (t ) develops and accelerates the motor. As the angular
velocity ω(t ) = θ̇(t ) increases, the friction f ω(t ) in motor and
drive shafts, and back-emf (electromotiv force) kvω(t ), reduces
the acceleration ω̇(t ) = θ̈(t ).

• L: Motor inductance, assumed to be 0.

• R: Motor armature resistance, unknown and will be measured di-
rectly.

• kv : Back-emf constant. Unknown and will be identified through steady-
state analysis.

• ka : Torque constant. Unknown and will be identified through steady-
state analysis. Related to kv .

• f : Friction coefficient. Unknown and will be identified through steady-
state analysis.

• J: Motor inertia. Unknown and will be identified through dynamic
analysis.

For a perfect motor with no energy losses, it holds that ka = kv . However,
in practice this does not hold, and we know that

ka ≈ 0.65kv . (3.3)

Our task in this lab is to perform experiments to identify R, kv (and thus
ka), f and J, to obtain a dynamical model which relates the applied voltage
uA(t ) to the angular velocity ω(t ). This model will be used in later labs.
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3.1.1 Rotary encoder

The motor is equipped with a simple encoder1 to measure rotation of the
motor shaft. The encoder uses n = 12 holes with a so called quadrature
design, meaning it has a resolution of 48 pulse changes per revolution. The
motor shaft is connected via a gear with transmission ratio 15, meaning the
encoder will deliver 48·15 = 720 pulse changes per motor shaft revolution,
leading to a maximal theoretical accuracy of 0.5◦.

Figure 3.2: Encoder in motor

Preparation 11 One full revolution of a wheel will give us a measurement
from the encoder of 720. However, we wish to work in standard units of ra-
dians, and would thus like to obtain the value 2π. With which scaling gain
should the measurement be multiplied with to accomplish this?

Open the folder minseg on the Desktop, and start MATLAB and SIMULINK

by double-clicking the SIMULINK model dcmotor/template1. This SIMULINK

scheme graphically describes the code that will be generated and down-
loaded to the Arduino micro-controller.

Some important features are marked in Figure 3.3

1A small light-source shines at the right-most cog in the figure, and by detecting when
the light is blocked or let through the holes, rotation is detected
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Figure 3.3: Template SIMULINK model

1. The value here will be sent by the Arduino micro-controller to the
motor driver, and is our control signal u(t ). Due to voltage losses
internally on the board in the motor driver chip, the voltage uA(t )
which actually is applied to the DC-motor is lower than u(t ).

2. The Arduino micro-controller counts pulses on the encoder, and this
value can be used for computing the angle of the motor.

3. We convert the number of pulses counted to rotation angle θ(t ) in
radians. This is done in the Gain block.

4. The SIMULINK model is specified to run in External model. This al-
lows the Arduino to communicate with MATLAB continuously.

5. When running the model in external mode, the Arduino micro-controller
can send data to MATLAB and SIMULINK. Here, we send the scaled
encoder measurements to a plot scope to display them in real-time.

6. In external mode, we can also send information from MATLAB to the
Arduino micro-controller. We will use a slider gain to change the re-
quested motor voltage u(t ) while the code is running. We will be able
to multiply the constant 1 with values between 0 and 4.5, i.e., request-
ing up to 4.5V.

7. We compile, download and start the code on the Arduino micro-controller
by pressing the green run button.

8. We stop the code by pressing the stop button. Must be one before
editing the model
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3.1.2 Identification of armature resistance

The resistance R of the motor is obtained by measuring the resistance over
the motor using a multimeter. However, we do not have direct access to the
cable attachments. Instead, we perform this measurement on the Arduino
board. The resistance of the motor can be obtained by measuring the resis-
tance between the two points labeled M1A and M1B, as illustrated in Figure
3.4 and Figure 3.5. These two points are in connection with the motor at-
tachement, and placed on the board to simplify motor measurements.

Figure 3.4: Motor resistance and voltage measurements are done between
the points labeled M1A and M1B next to the motor connection.

Task 1 (Resistance identification) Make sure the Arduino board is unpow-
ered (i.e., USB cable disconnected). Put the multimeter in resistance mea-
surement mode (Ω), and measure the resistance. You typically see a value
between 3Ω and 6Ω. Connect the USB cable after performing the measure-
ments. Note that it takes the multimeter a couple of seconds to stabilize on a
final value.
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Figure 3.5: Schematic picture of the measurement points M1A and M1B
and the relationship between the requested control voltage u(t )
and the actually applied voltage uA(t ). A large voltage loss oc-
curs in the cheap motor driver chip (actual pin configuration
might not be correct, picture is only for illustration)

3.1.3 Steady-state measurements for identification of ka, kv

and f

In a batch of experiments, we will study the steady-state currents and angu-
lar velocities, for different constant applied motor voltages. For a constant
applied motor voltage uA(t ) = uss , we denote the corresponding obtained
steady-state value of the current and applied voltage

iss = lim
t→∞ i (t ) (3.4)

ωss = lim
t→∞ω(t ) (3.5)

Preparation 12 Based on (3.1), which equation holds at steady-state, and
how can this relationship be used to estimate kv by measuring steady-state
values of voltages, currents and angular velocities? You can assume R is
known by now.

To proceed, we must obtain measurements of the voltage uA(t ) on the mo-
tor, the current i (t ) in the motor, and the angular velocity ω(t ). In the fol-
lowing paragraphs we explain how this is done. The actual measurements
are done later!
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Measuring motor voltage

When the motor is spinning at steady-state, the applied voltage uA(t ) can
be measured over the same positions as we did for the resistance measure-
ment. To do so, we will put the multimeter in DC-voltage mode (V=), and
measure the voltage between M1A and M1B.

Measuring motor current

To measure current in the motor, we will open the electrical circuit (volt-
ages are measured in parallel over objects, while currents are measured in
series). The board is prepared for such a measurement. On the board just
in front of the motor connection, there is a jumper (with a colored tape
handle) which can be removed to open the electrical circuit. To measure
the current, we will put the multimeter in current (mA) mode and close the
circuit with the multimeter.

Figure 3.6: By removing the jumper next to the motor connection, the cir-
cuit is opened and we can measure current over the two pins.
Be careful not to bend the pins by applying excessive force.
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Measuring angular velocity

The encoder only gives us angles, so we have to estimate the angular veloc-
ity. Given two measurements of the angle θ(t ) and θ(t −Ts) where Ts is the
sampling time (in our case fixed to 0.03s), the most basic estimate of the
angular velocity is the Euler backwards approximation

ω(t ) = θ(t )−θ(t −Ts)

Ts
(3.6)

Unfortunately, the estimate obtained from this simple computation will
not behave well when the code runs in external model. The problem is that
the Arduino computer is slow, and when it has to communicate with MAT-
LAB, it will not be able to finish computations in time sometimes, which
means that the actual sampling time will be different from the fixed value
0.03s that is used in the computation. As an effect, the derivative estimate
will look noisy. We will counteract this by continuously taking the average
of the last 20 derivative estimates (a low-pass filter called an FIR filter)

Open the SIMULINK component library (either by writing simulink in the
MATLAB command prompt, or through the menu in your SIMULINK model
View/Library browser.

Task 2 (Code for velocity computation) Update your SIMULINK model to
incorporate the derivative computations as in Figure 3.7. The block Discrete
Derivative (which implements the Euler approximation) and Discrete FIR
filter are both found under Simulink/Discrete. A so called plot scope can be
found under Sinks, or simply copy the scope already available in the model.
Note that the text under blocks is completely arbitrary, and you can change
this. Double-click the FIR filter block and change the code in the field coeffi-
cients to repmat(0.05,1,20) (everything in boxed bold text!). This code will
create a vector of length 20 with all elements equal to 0.05, which leads to a
filter which takes the average of the 20 last values. Save your model.
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Figure 3.7: Updated SIMULINK model with derivative computation.

3.1.4 Experiments

Let us now perform the experiments. We will run the motor with differ-
ent requested voltages u(t ) = 2.5V, u(t ) = 3.5V and u(t ) = 4.5V (set in the
middle edit box in the slider gain while running), and record the resulting
steady-state applied motor voltage uA(t ) = uss , currents iss and angular ve-
locities ωss .

Task 3 (Measurements) Attach the USB-cable (preferably in the USB con-
nection on the monitor) and download your code to the Arduino by pressing
the green run button. For convenience, perform the experiments in two steps.

In a first run, record steady-state motor voltage uss (multimeter) and angu-
lar velocity ωss (plot scope) with the the three different requested voltages.
To set the requested motor voltage in the Slider gain precisely, use the middle
edit box. In the angular velocity plot, you will have to right-click in the plot
and select auto-scale, or press auto-scale in the plot menu. Record the values
of all voltage and angular velocity measurements in the table below.

In a second run, remove the motor jumper and repeat the 3 experiments
measuring the current iss and insert in the table. The columns for kv and
f will be filled later during the lab.

You should see applied voltages slightly below the requested voltages, cur-
rents in the range 20mA to 50mA, and rotational velocities up to at most 7
rad/s or so.
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Requested u(t ) uss ωss iss kv f

2.5V
3.5V
4.5V

Task 4 (Compute kv estimates) Once you have all the measurements, you
can compute estimates of the back-emf constant kv using your result in prepa-
ration 12. Compute estimates of kv based on the three experiments and in-
sert in the table.

Task 5 (Compute final kv estimate) To decide on a final value of kv one can
for instance compute the average value of the three estimates. However, a
more robust approach which will guard us against a failed experiment (bad
measurement, mistake in computation,...), is to take the median instead,
which in this case will be the middle value. What is your final estimate of
kv ?

Task 6 (Compute ka) With kv available, what is the estimated value of the
torque constant ka?

With all measurements available, and the estimated value of ka , we are
ready to use (3.2) to estimate the friction coefficient f . However, the simple
linear differential equation does not tell the whole truth. Besides the lin-
ear velocity dependent friction torque f ω(t ), there is also a static friction
in the motor which prevents the motor from starting to turn and affects the
performance at low velocities. You can see this if you decrease the control
signal u(t ) until the motor just barely turns. The current will be signifi-
cantly non-zero already at that point. You would also see this if you would
plot the computed torques kaiss against the angular velocity ωss , as exem-
plified in Figure (3.8). The friction coefficient f is the slope of the curve,
but the curve will not pass through the origin.
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Figure 3.8: Typical torque and angular velocity measurements. A signifi-
cant amount of current (i.e., torque kaiss) is lost on overcoming
the static friction, the torque-angular velocity line does not go
through the origin.

If we let i0 denote the current required at very low speed, our model changes
to (valid when i (t ) ≥ i0)

ka(i (t )− i0) = Jω̇(t )+ f ω(t ) (3.7)

Preparation 13 How can f be computed from steady-state measurements
iss and ωss if we know i0 and ka , using the model (3.7)

Task 7 (Identify i0) Find out the current i0 which is used when the motor
turns very slowly by decreasing the requested voltage until it is turning very
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slowly. When you are done, turn the voltage to 0, stop the code, and re-install
the jumper.

Task 8 (Compute f ) Use the model and the value of i0 to compute estimates
of f from the three experiments, and complete the table. Use the middle
value as an estimate of f .
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3.1.5 Dynamic analysis for identification of J

Through static experiments (i.e., analysis of steady-state signals), we have
managed to identify 3 out of the 4 parameters. The parameter J requires
us to study the dynamic behavior. The fact that we need dynamic analysis
to estimate J is natural as it only enters our equations multiplied with ω̇(t ),
which is 0 in a steady-state analysis.

The constant J effectively makes it harder to accelerate the motor. The
larger (heavier wheels) J is, the longer time it will take for the motor to reach
steady-state velocity. Hence, our analysis will be based on estimating the
time-constant of the system from uA(t ) to ω(t ).

By combining (3.1) and (3.2) we arrive at the differential equation

RJω̇(t ) =−(R f +kv ka)ω(t )+kauA(t ) (3.8)

Preparation 14 Prove (3.8)

Preparation 15 Write the differential-equation (3.8) as a standard first-order
system Tω̇(t )+ω(t ) = KuA(t ), i.e., derive the time-constant and static gain of
the system (3.8), in terms of the parameters R, J, f , kv and ka .
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Preparation 16 If you know the time-constant of the system, and all param-
eters except J, how can you compute J?

In our final experiment, we are going to study the transient behavior of
the velocity during a step-change in applied voltage. Open the SIMULINK

model template2 which has been prepared such that it will generate a se-
ries of steps in requested voltage u(t ) from 0V to 4.5V, which will lead to a
series of steps in applied voltage uA(t ) following your previously developed
table. The approximate angular velocity is sent to MATLAB and recorded in
a variable data in the MATLAB workspace.

Task 9 (Collect step-response data) Download and run the modified model.
You should see a sequence of steps being performed on the motor. Let it per-
form a couple of those, and then stop the code (preferably when no voltage is
applied).

Task 10 (Study step-response data) Plot the step-responses (slightly smoothed
to make it easier to read values) in MATLAB by running

plot(data.time,smooth(data.signals.values))
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Study the plot of the steps (zoom in on a single step!). What is the steady-
state value of ω(t ) in the steps? What was the applied steady-state voltage
uss on the motor when requesting 4.5V according to earlier experiments? (of
course, the steady-state angular velocity should coincide with the value in
the table also). Based on this, what is the experimentally derived static gain
from applied voltage uA(t ) = uss to angular velocity ω(t )?

Task 11 Based on the plot of the step-response of the motor, what is the ex-
perimentally derived time-constant?

Task 12 Based on the experimentally derived time-constant and previously
derived physical parameters, what is the value of J?

Task 13 To summarize, what does the model look like (with numerical val-
ues) if you write it as a standard first-order model in the form used in prepa-
ration 2 and 7.
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Comments on the model

A lot of effort has been placed in this lab on experimentally identifying the
physical parameters J, R, f , kv and ka . However, in the end, these 5 pa-
rameters are used in a first-order system which just as well can be defined
directly from the experimentally obtained time-constant and static gain.
In many situations, this modeling approach is just as useful, as it com-
pletely describes the input-output behavior of the system. A simple step-
response experiment, and we have a sufficiently precise model to simulate
the system, design controllers, and analyze performance. Performing step-
responses on system to quickly derive models is extremely common prac-
tice, and often leads to sufficiently good models to be used for control.

The first-order model derived in this lab is used for analysis in forthcom-
ing labs, and is part of a complete model of the MinSeg, required for the
development of a balance controller.
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3.2 Summary and reflections

Summarize and reflect on concepts in this lab.

Questions Answers

1. The MinSeg DC-motor is ä a model

ä a system

ä a signal

2. The differential equation
describing the MinSeg
DC-motor is

ä a model

ä a system

ä a signal

ä a parameter

3. The time-constant
describes

ä How fast the system reacts to
changing inputs

ä Which constant value the output
will converge to

4. The static gain K
describes

ä The ratio between the output and
input amplitudes in steady-state

ä The amplitude of the output

5. The final value of the
output depends on

ä The time-constant

ä The input amplitude

ä The static gain

6. A first-order linear
differential equation is

ä Uniquely defined by a time-
constant and static gain

ä Is not uniquely defined by time-
constant and static gain

Most unclear to me is still: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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