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Chapter 1

Introduction

The purpose of this lab is to illustrate sensors, measurements, filtering
and simple sensor fusion. Our goal is to estimate the tilt-angle of the
MinSeg. By extracting information from both the accelerometers and
the gyro and combining these using low-pass and high-pass filters, we
will create a better estimate of the angle of the MinSeg, compared to a
naive approach of using only the gyro, or only the accelerometer.

Figure 1.1: Intuitive Aerial AB in Linköping develops a camera-
carrying Hexacopter. For high-precision autonomous flight
(and filming), it is important to know the orientation
(pitch-, roll- and yaw-angles) of the system. Gyros and
accelerometers are used to extract as much information as
possible, with as little error and noise as possible.
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1.1 Hardware set-up

The lab is based on three main hardware components.

To begin with, we have a standard desktop computer. This computer
is used to automatically develop and deploy code using Matlab and
Simulink models.

We use a board which is equipped with an accelerometer and a gyro.
The board is built around an Arduino micro-controller which runs the
auto-generated code. It also communicates with the desktop computer
and thus allows us to look at the measurements.

The Arduino board together with the motor and wheels is called the
MinSeg.

1.2 Trouble shooting

Complaints about COM port or connection when downloading
to board Disconnect USB-cable and connect it again.
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Chapter 2

Preparation

The questions below, and all questions throughout the document marked
as Preparation must be done before attending the lab. Note that there
are additional preparation exercises in Chapter 3.

Solutions to all questions should be available upon request from the lab
assistant, and the preparation exercises in Chapter 3 are preferably writ-
ten in this printed documented.

The scheduled time spent with the laboratory equipment is only a small
part of the complete lab, as a major part is spent on the theoretical
material during preparations.

Preparation 1 Read Chapter 1 and 2 in the auxiliary course compendium.

Preparation 2 Gyros allows us to measure the angular velocity, which
we can integrate (numerically in practice) to obtain the rotation angle.
The problem is that the angular velocity measurements have errors.

We typically divide errors into a fixed constant error (called bias or cal-
ibration error) and a faster varying error term (noise) which is 0 on
average. Consider the measurement of a true angular velocity ω(t) which
we want to integrate to obtain the true rotation angle θ(t) =

∫ t

0
ω(τ)dτ .

Let the measurement be ωm(t). A simple description uses a bias b, noise
amplitude ε and noise frequency N ,

ωm(t) = ω(t) + b+ ε sin(Nt) (2.1)
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Integrate this expression analytically and derive an expression for the
estimated angle θm(t) =

∫ t

0
ωm(τ)dτ (you assume initial conditions to

be 0). The solution will consist of the true angle, a linear term, and a
periodic term. Verify that the term in the error θ(t)− θm(t) that depends
on b will grow as time increases (called linear dift), but the term coming
from the high-frequency noise will be limited and decrease the larger N
is.

Preparation 3 To obtain the rotation angle θ(t), we have to compute
the integral θ(t) =

∫ t

0
ω(τ)dτ . However, we cannot integrate perfectly on

a computer with a finite number of samples, and must use an approxi-
mation. One such integral approximation is a rectangle approximation
based on Euler backwards. With measurements ω(kTs) for k = 0, 1, . . .
and sample-time Ts, the approximation is given by

θ(kTs) = θ((k − 1)Ts) + Tsω(kTs) (2.2)

Consider the case in Figure 2.1 where a signal ω(t) has been sampled
with Ts = 1. Illustrate graphically in the figure how the integral from
t = 0 to t = 4 is computed, and confirm that the approximation leads to
the estimate θ(4) = 9.5. Note that the value ω(0) never is used in the
backwards approximation. You initialize the angle estimate to θ(0) = 0.

Preparation 4 When working with sampled signals, we often use the
z-transform for notational convenience. Instead of working with θ(kTs)
we introduce its transform θ(z)1, and the unit delay-operator 1

z
to express

θ((k − 1)Ts), i.e., the transform of θ((k − 1)Ts) is 1
z
θ(z). Introduce this

notation for (2.2) and show that the integral computation (2.2) can be
represented as

θ(z) =
Tsz

z − 1
ω(z) (2.3)

Preparation 5 Read the complete lab-pm. There are more theoretical
questions in the pm which you are supposed to complete as preparation.

1To avoid using capital greek letters, we indicate signal transforms by bold letters
in this text
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Figure 2.1: A continuous signal sampled (dots) with Ts = 1s.

Preparation 6 Print this document. You must bring a physical copy to
the lab.
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Chapter 3

The lab

The lab will primarily consist of experimentation and data collection,
using theoretical results and strategies derived during your preparation.

Items labeled Preparation are questions you are supposed to solve and
fill out before attending the lab.

Items labeled Task are questions you answer and solve when attending
the lab and have access to the hardware.

3.1 Gyro and accelerometer

The board is equipped with a gyro measuring angular velocity around
3 axes, and an accelerometer measuring linear acceleration in the same
axes. The accelerometer and gyro hardware are placed on the blue board
as indicated in Figure 3.1. The measurements are done in a body-fixed
coordinate system as indicated in Figure 3.2.

The gyro

Although the gyro is the natural sensor to use for estimating an angle
(as it measures the derivative of an angle), it has some problems. To
begin with, the gyro measurements will only give us angles relative to
initial orientation, as we simply integrate the angular velocity. In many
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Figure 3.1: The accelerometer and gyro are placed on the blue board
(MPU 6050) on the bottom left of the figure. The sensors
are (with the setup in this lab) capable of measuring up to
4g accleration and an angular velocity of 250◦/s. The blue
board combining an accelerometer and a gyro is called an
IMU (inertial measurement unit). Retail price in the order
of 50SEK. An IMU with similar performance was at least
100x as expensive 20 years ago, and 10 times as large.

applications, we are interested in the absolute angle of the device, such
as knowing if the MinSeg is standing straight up or not. In addition to
this, the sensor has bias errors, meaning that the angle estimate will drift.
Even if we leave the device completely still, the preparations showed that
any bias in the angular velocity measurement will lead to a growing error
in the angle estimate.

In the lab, we are only studying the tilt-angle of the MinSeg, i.e., the
balancing angle of the MinSeg relative to the surface (0◦ degree when
lying flat on a table, and −90◦ when standing straight up). Consequently,
we are only interested in rotations around the x-axis (rotations in the y−z
plane) and thus only use one of the gyro measurements.

The accelerometer

The accelerometer might seem unrelated to the orientation of the device,
as it measures the three linear accelerations of the object. However,
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Figure 3.2: Body-fixed coordinate system used for accelerometer and
gyro.

the acceleration is measured relative to free-fall, meaning that when
the device is kept still, there should be an acceleration of magnitude√
a2x + a2y + a2z = 9.8m/s2. The way this magnitude is distributed on the

three body-fixed accelerations ax(t), ay(t) and az(t) will give us informa-
tion about the absolute orientation.

Consider the coordinate system of the setup in Figure 3.2. When the
device is lying flat on a table with the battery holder facing down, we
should see the measurements ax = 0, ay = 0 and az = 9.8 (The device is
accelerating up from the table, relative to free-fall. An alternative view is
that there is a force in the positive z-direction). When in perfect balanc-
ing mode, i.e., tilted up and standing on its wheels, the measurements
should be ax = 0, ay = −9.8 and az = 0. The device is still accelerating
up from the table relative to free-fall (normal force up from table), but
y is pointing downwards, hence the negative sign.

From this, it is clear that when we are balancing the device on its wheels
and it is sufficiently still, the tilt-angle is related to the relative size of
the acceleration components ay and az. No movement should occur in
the x-directions, and thus ax will be 0.
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In practice the MinSeg is never completely still when balancing, so ay and
az will contain parts that come from actual movements, which will in-
fluence the computed angle, i.e., we will see noise on the angle estimate.
Another problem is that the accelerometer might have been installed
slightly tilted, which will give us a bias on the acceleration signals. How-
ever, since we never integrate the acceleration signals in this application,
this bias will not lead to any kind of drift, but just a constant error on
the angle estimate.

3.1.1 Gyro experiments

The first part of the lab will concentrate on the gyro, and in particular
the gyro signal for rotation around the x-axis in the y − z plane. Start
Matlab and the Simulink file lab2template1, shown in Figure 3.3.

Figure 3.3: Template for gyro angle estimator.

Preparation 7 The largest possible angular velocity the gyro can mea-
sure is 250◦/s. When the gyro senses this rate, it outputs the value 32768
(215, the largest possible number that can be encoded using 16 bits, 1 bit
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is used for the sign). How should the measurement be scaled to go from
the measured integer value, to the unit deg/s.

Task 1 Check the value in the gain block to confirm your preparation on
the measurement scaling.

Task 2 Assemble the MinSeg as shown on the front-page, and place the
MinSeg flat on the table with the battery holder facing down, and connect
the USB cable. Compile, download and run the code by pressing the green
run button. Study the plot with the uncompensated measurement. As the
MinSeg is stationary, the true angular velocity is 0, so everything you
see is measurement errors (and perhaps extremely small rotations due to
vibrations in the table). Make a rough estimate of the bias level, i.e., the
constant error b in (2.1). Stop the code by pressing the square black box
next to the run button.

Preparation 8 A simple way to reduce the bias effect is to estimate its
value, and then alter the measurement so that the signal varies around
0 instead. Of course, this only works if the bias really is constant (it
never is in practice, it might change with temperature etc), but it is a
good start. If you see the gyro signal varying around the level 70 when
lying still, what value should be used in the bias compensation block in
Figure 3.3?

Task 3 Update the constant in the Bias compensation block such that
the bias level is compensated for. Download and confirm the change by
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looking at the plot of the compensated signal. Also study the plot showing
the angular velocity in degrees per second. How large is the amplitude of
the fast varying measurement errors?

We are now ready to start integrating the adjusted angular velocity mea-
surements. To obtain the angle, all we have to do is to integrate the
signal using the approximation in preparation exercise 3.

Task 4 Extend your model according to Figure 3.4. The Discrete-time
Integerator block can be found under Discrete in the library browser.
Double-click the discrete-time integrator block in your model and change
the Integrator method to Integration: Backward Euler, and change the
sample-time to −1 (which means it uses the sample-time specified in the
global model configuration). The Gain should be left at 1.0. Apply and
close. You have now defined the integral to be computed exactly as in the
preparation exercise.

Task 5 Start the code, and study the angle estimate plot. Note that it
does not stay constant, despite the MinSeg being completely still. This is
due to a remaining bias error and what you are seeing is mainly the linear
drift. Find out how long it takes for the angle to drift 1◦. This is a typical
performance measure on a gyro implementation. The longer it takes, the
better. Your solution will probably be in the order of 5−30 seconds, which
means that after some minutes, the angle estimate is completely wrong.
Rotate the MinSeg so that it stands on its wheels. The angle estimate
should change −90◦.
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Figure 3.4: Integrated and bias-compensated gyro measurements.

3.1.2 Accelerometer experiments

Let us now turn to angle estimation from the accelerometer signals.
Study Figure 3.5. If the device is stationary at an angle, the total ac-
celeration is g = 9.8m/s2 and it is pointing downwards, and thus the
accelerometer measures g upwards (as it measures relative to free-fall).
This acceleration signal will be picked up in the body-fixed coordinate
system through the acceleration measurements ay(t) and az(t). By geom-
etry, we have θ(t) = arctan(ay(t)/az(t)). Note that ay will be negative
from the definition of the coordinate system in Figure 3.2, hence the
angle will be negative in the current definition.

Of course, if the MinSeg ever was in the angle illustrated in Figure 3.5, it
would not be stationary but had to be moving. This means there might
be additional forces and resulting accelerations acting, but the idea here
is to see those effects as noise.

Task 6 Open the file lab2template2. Double-click the gyro angle es-
timator and update the bias compensation to the value you are using.
Download the code and study the angle estimate from the accelerometer
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Figure 3.5: The acceleration relative to free-fall will be picked up in a
stationary situation on the two coordinates ay(t) and az(t)
allowing us to compute the tilt-angle θ

signals, and compare it to the angle estimates from the gyro, which is
displayed in the same plot. How do they compare and differ? See what
happens if you move the MinSeg very quickly and go beyond the measure-
ment limit 250◦/s in the gyro.

3.1.3 Sensor fusion with complementary filter

What you should have seen now is that the angle estimated using the gyro
behaves well on a short time-frame, but drifts on a long time-frame (low-
frequency errors). The angle estimate from accelerometer signal on the
other hand has no drift (good in a long time-frame), but has more noise
(bad on a short time-frame, high-frequency errors). We would like to
combine the merits from the two sensors, while avoiding the drawbacks of
them. In other words, we trust the long-term average of the accelerometer
angle estimate but not any of its fast changes, while we have no confidence
in the long-term value of the gyro estimate.
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Recall the estimate generated by the gyro signal. Call this estimate θg
and consider the discrete-time computation with approximated integral.

θg(kTs) = θg((k − 1)Ts) + Tsω(kTs) (3.1)

If the estimate ever goes bad (due to drift for instance), it will never
get better. If all movements end, the angle estimate will stay at its
last value. What we could do is to bring it back to a somewhat correct
value periodically. For instance, we could reset it to the value obtained
from the accelerometer estimator every 10 seconds, or similar heuristics.
A more clever idea is to continuously use the angle estimate from the
accelerometers. Let the accelerometer angle estimate be called θa(kTs),
and introduce a new estimate θc(kTs) which is a slight variation of the
gyro integration

θc(kTs) = (1− α)θa(kTs) + α
(
θc((k − 1)Ts) + Tsω(kTs)

)
(3.2)

The constant α is typically close to 1. When it is 1, we obtain the gyro
solution, and when it is 0 we obtain the accelerometer solution. What
we are doing is that we are slowly pushing the estimate θc(kTs) towards
θa(kTs), while still using the high-precision gyro measurements to detect
rotations. Effectively, we will eliminate the drift, while retaining the
good short time-frame qualities of the gyro. Using multiple sensors with
different characteristics like this is called sensor fusion.

Preparation 9 With z−1 denoting unit time-delay, show that (3.2) can
be written as

θc(z) =
(1− α)z

z − α
θa(z) +

Tsαz

z − α
ω(z) (3.3)
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Preparation 10 With θg(z) = Tsz
z−1
ω(z) denoting our original gyro es-

timate, show that the solution (3.3) alternatively can be written as

θc(z) =
(1− α)z

z − α
θa(z) +

α(z − 1)

z − α
θg(z) (3.4)

Hence, the new solution is a sum of the two old solution, each of them
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filtered. Let us look at the frequency response of those filters (here with
α = 0.9 and Ts = 0.025s)

z = tf(’z’,0.025);
Ha = (1-0.9)*z/(z-.9);
Hg = 0.9*(z-1)/((z-.9));
bodemag(Ha,Hg);legend(’Ha’,’Hg’);

The result is seen in Figure 3.6. We see that the filter Ha(z) used on the
accelerometer angle estimate is a low-pass filter (removes fast variations
and only keeps slow variations) and the filter Hg(z) for the gyro angle
estimate is a high-pass filter (removes the slow drift and only keeps fast
variations). The name complementary filter comes from the fact that the
two filters sum to 1 (check in (3.4)!).

Figure 3.6: Amplitude gain for the two filters used in the complemen-
tary filter approach. The accelerometer solution is low-pass
filtered, while the gyro solution is high-pass filtered

Preparation 11 In the block diagram in Figure 3.7, values and connec-
tions are missing. Insert the values α, 1 − α and Ts in suitable blocks,
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and draw the connection, to implement the computation in (3.2). As a
hint, standard Euler backwards as in (3.1) is implemented in Figure 3.8.

Figure 3.7: Insert missing values and connection to implement the com-
plementary filter (3.3)

Figure 3.8: Example showing how discrete-time integral approxima-
tion (Euler backwards) would be implemented manually,
Out(kTs) = Out((k − 1)Ts) + TsIn(k)

Task 7 Open lab2template3 and double-click the Complementary fil-
ter block, and complete it according to the preparation exercise. Use
α = 0.9 and Ts = 0.035. Update the bias compensation in the gyro angle
estimator. Start the code and study the three angle estimate solutions.
How do they compare? Try other values on α such as 0.5and 0.99. Try
with a completely wrong value on the bias compensation (add an extra
500 or so). Rotate the MinSeg quickly so the 250◦/s limit is violated.
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The angle estimate from the accelerometer signals are based on the raw
accelerometer signals. An acceleration of 1 g corresponds to a measure-
ment of 8192 while no acceleration should lead to the measurement 0. In
our computation of the angle based on these signals, we have not scaled
the data to m/s2, as the scaling cancels out when we perform the divi-
sion before taking arctan. However, we should compensate for calibration
error / bias in the accelerometer signals.

Task 8 In Accelerometer angle estimator, add bias compensation to
the two measurement signals ay(t) and az(t) to improve the accelerometer
angle estimator. When lying flat on the table, ay(t) should be 0, and az(t)
should be 8192. You thus have to rebuild the model in the Accelerometer
angle estimator block to incorporate bias compensation as in the Gyro
angle estimator block. You do this exactly as when you tuned the gyro
bias compensation. Can you improve the precision of the accelerometer
angle estimator, and thus the complementary filter estimate?
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