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Figure 1: Simulink model for control of a rotating DC servo.

Preparations
Make sure you have reviewed Lecture 11 on computer arithmetic before starting this
lab. Also reviewing Problem Solving Exercise 3 (on design of state feedback and
observers in MATLAB) can be useful.

1 Introduction
The purpose of this “virtual” laboratory exercise is to develop an embedded controller
for a rotating DC servo. By embedded we mean that the controller is implemented in
the low-level language C, and we account for the A/D and D/A conversion of signals.
In the physical version of the lab you would have used an ATMEL AVR microcontroller
to run the C code and control the DC servo motor. Here you will develop the same code
for the controller but test it within the Matlab simulation environment Simulink. The
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.slx file contains the Simulink model: In Matlab, navigate to the folder that contains
the model and open it. This model uses the CCaller block to execute the C code that
you will write. This block is available only since Matlab 2019, therefore the Matlab
version 2019 is needed to run it1. The mentioned Simulink model is shown in Figure 1.

You will develop one controller for the angular velocity of the rotating servo and
one controller for the angular position. A PI controller will be used for velocity control.
The position will be controlled using state feedback, and therefore a state-observer is
required as well. Also, you will use the estimation of a constant load disturbance to
obtain integral action. Both the velocity and position controllers will be implemented
using floating-point arithmetic at first, and then using only fixed-point arithmetic.

1.1 The ATMEL AVR Microcontroller
Programs for the AVR are usually written in C and sometimes in assembler. The AVR,
like most microcontrollers, has no built-in support for floating-point arithmetic. If the
C program uses floats, then all operations on them are emulated using calls to a
floating-point library. Since the floating-point library is very slow and consumes a lot
of program memory, it is often much more efficient to use fixed-point arithmetic. It can
also be noted that the AVR has no hardware instruction for (integer) division.

Analog input is performed using the built-in A/D converter, while analog output
is emulated using pulse-width modulation (PWM). This technique is used when the
voltage source cannot be controlled to obtain an arbitrary number of volts; it can only
be turned on (giving maximum voltage) or turned off (giving zero voltage). With PWM,
the desired analog signal is generated through an high-frequency square wave, i.e., a
series of pulses at the maximum voltage available. Those pulses are then filtered using
an analog filter to obtain the desired signal. Wider pulses will generate a higher signal,
while narrower ones will generate a lower signal. In this context, the duty cycle of
the square wave (i.e., the percentage of the period that the signal is high) is used as
the control variable. In this way we will be able to generate the desired voltage to
be applied to the DC motor. Timers are set in the AVR microcontroller such that the
controller is executed every 50 ms, and the square wave of the PWM has a period of
10 ms.

NOTE: You will not be asked to implement the PWM generation. This explanation
is just for you to understand the implementation of control systems that rely on the
generation of analog voltages.

Both the analog inputs and outputs of the AVR controller take values in the range
[−10 V, +10 V], with n = 10 bits of precision. This means that the control output y
and the control input u are int16_t variables that can take values only between −512
(corresponding to −10 V) and +511 (corresponding to 10 V)2.

1You can download Matlab from http://program.ddg.lth.se/en/ . You need to include Simulink
and Control System Toolbox in the installation.

2Review the two’s complement representation if this asymmetry is not clear.
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2 The Simulink Model
In this section we describe the Simulink model and how to use it. The Simulink model
relies on some parameters that are defined in the Matlab script initialize.m; this
script is run automatically by Simulink before every simulation. The Simulink model
is executed by clicking on the green play button on top of the window. If you double
click on the Scope block in the bottom part of the model then a plot of the reference
r, the control output y and the control input u is shown. All the signals are plotted in
volts. The reference is a square wave with a period of 10 s and an amplitude of 5 V.
You can also click on the legend of the different signals on the top right of the plot to
hide them.

2.1 The Controller
The controller block is the one representing your controller, and it is the most important
one in this lab. If you double click on it, a window opens, and you can select which
controller you want to use. Each controller is implemented as one C function. Once
you have selected the desired function, its name will appear on the block (for example,
in Figure 1 the pos_fixed function is selected).

In the folder src you will find four .c files. Each of those contains the definition
of a C function for one of the four different controllers that you have to implement.
These are the files you have to edit to do this lab.

The control action is written to the D/A converter with the return statement.
This statement also ends the function call. This means that the code that is writ-
ten after the return statement will not be executed. As a consequence, in this envi-
ronment, the processing time of the controller cannot be minimized by updating the
state after having actuated the new control action3. The state needs to be updated
before the return. This is an artifact of this simiulaiton environment. In the physi-
cal version of the lab (and on real controllers) you would use another function (e.g.,
write_ctrl_action()) to write the new control signal to the D/A converter.

2.1.1 Some Useful Tips on Writing C Code

• In C programs, constants are usually defined at the beginning of the file with
the syntax #define K 99.99 to define K = 99.99 in the whole file. A common
problem is writing defines with an equal sign and/or a semicolon at the end. E.g.,
“#define K = 1.234;” is wrong and should be “#define K 1.234”. These
type of mistakes might give very strange compilation errors.

• Some variables you will want to be the same in the different executions of the
controller, namely the states. To prevent that the variables are re-allocated ev-
ery time (and therefore erased) you can use the keyword static (e.g. static
float I;). This keyword allows for static allocation of the given variable across
the different instances of the C function. An alternative could be to use global

3On the other side, in these simulations, the execution of the code is considered “instant”, and its duration
does not really affect the system’s performance.
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variables (i.e. variables defined outside of the function), the problem with this
approach is that the different funcitons share the same global scope and therefore
you will not be able to have the same name for variables that belong to different
controllers.

• Another common problem is writing “int32_t temp = K*y;” when K and y

are 16 bit. This will not give a 32 bit result! You must cast at least one of the
operands to 32 bits first.

• Multiplication and division by two and its powers are easily implemented with
the bit-shit operator. E.g., to implement a = a∗2−3 you can write a = a >> 3.

• Be careful with the operator precedence between additions and shifts. For exam-
ple “u = (temp >> 13) + I;” is correct, “u = temp >> 13 + I;” is not.

• When you write C code, you write assignments and not equations. Therefore
the order in which you write the lines of code is very important and has to be
carefully taken into account.

2.2 D/A (PWM)
This block implements the PWM modulation of generating the analog voltage signal.
You can see how it is implemented by double clicking on it. The square wave genera-
tion is implemented with the common method of comparing the signal to a triangular
wave. Opening the scope on the right you can see how the low pass filter “transforms”
the square wave into the desired analog signal.

2.3 Linear Servo
This block implements a linear model simulating the dynamics of the DC servo. By
double clicking on the output switch on its right you can choose which signal is used
as output. Obviously you should use the angular velocity for the velocity control and
the angular position for the position control.

2.4 A/D Converter
This block implements the analog to digital conversion of the output signal. If you
double click on it and open the scope inside it you can see three different signals: the
original output signal, the quantized signal, and the quantized and sampled signal. You
will need to zoom into the signal to distinguish between the three of them.

3 Laboratory Assessment
You can check if the controller parameters and their fixed point represen-
tation are correct using the following form https://docs.google.com/

forms/d/e/1FAIpQLScHDXuzuYHGhQUix9Z7QNG51m33iPFXbZ9FKVzj1zxOw-

0GXQ/viewform?usp=sf_link . Insert your answers and submit your form, you
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will be able to see which are correct and which are not. Note: we will not check
your answers to this form, it is just for you to make sure you have the correct control
parameters.

The lab is individual, and each student has to submit his/her own code. Submit
the four .c files from the src folder by sending an email to claudio.mandrioli@

control.lth.se. Clearly comment EVERY SINGLE line of code! It is not suffi-
cient to implement the correct solution—you also have to be able to explain how you
came up with that solution. In the comments you should make clear why you made the
different choices (e.g., why do you define a variable with a certain type, why you do
a casting, why you do a bit-shift of that specific number of bits). Do not be afraid of
stating the obvious.

Please use the subject RTS lab 3: surname name your-lucat-id (e.g. “RTS lab3:
Mandrioli Claudio mm1243fp-s”) in the submission email.

4 Control of the Angular Velocity

4.1 Control Design
The transfer function from the control input u to the measured angular velocity y is
given by

P(s) =
2.25

s+0.12
To control the velocity process, we will use a simple PI controller,

C(s) = K
(

1+
1

sTi

)
4.1.1 Assignment 1

Determine K and Ti so that the (continuous-time) closed-loop poles are placed in −3±
2i. �

4.2 Implementation Structure
The PI controller shall be implemented in discrete time as

u(k) = Kβ r(k)−Ky(k)+ I(k)

I(k+1) = I(k)+ Kh
Ti

(
r(k)− y(k)

)
with reference weighting β = 0.5 and the sampling interval h = 0.05.

4.3 Floating-Point Implementation
4.3.1 Assignment 2.

Implement the velocity controller in C using floating-point constants and float vari-
ables.
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• The measurement and the feedback signal are the inputs of the C function
int16_t. Those gives a values in the range [−512,+511].

• The output shall be in the range [−512,+511]. Otherwise overflow might hap-
pen.

When implementing the floating-point control algorithm, you can simply ignore the
fact that the input and output can only assume integer values. When adding or multi-
plying an int and a float in C, the int is first converted to a float.

Simulate the model to test your controller.
Note the performance level (e.g. amplitude of ripple on the signals) so you can

compare it with the fixed-point implementation later. �

Once you have a working controller you should look at the scopes inside the D/A
and A/D convertes to see how they convert the signals.

4.4 Fixed-Point Implementation
4.4.1 Assignment 3

For the fixed-point implementation, we will use 16-bit wordlength (N = 16). Study
the controller coefficients and select a suitable number of fractional bits n. For sim-
plicity, we will use the same number of fractional bits for all coefficients. Convert the
controller coefficients to fixed-point representation.

Choose the number of fractional bit to maximize their number and improve preci-
sion. At the same time, make sure that no integers bits are missed during the computa-
tion: i.e. that overflow doesn’t happen.4

Instead of converting β , convert Kβ to fixed-point. Why? Which are the other
coefficients that should be converted? �

4.4.2 Assignment 4

Make a fixed-point implementation of the velocity controller in C using only integer
constants and int16_t and int32_t variables (the latter only for the intermediate
results).

• Remember that the input, output, and reference variables are integers, i.e., they
have zero fractional bits.

• For simplicity, use zero fractional bits also for the controller state I. This means
that addition and subtraction can be done without scaling.

Simulate the model to test your controller, remember to change the selected C func-
tion. If everything is done correctly, you should achieve very similar performance to
the floating point implementation. �

4Remember that you are allowed to use 32-bit integers for the intermediate results.
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5 Control of the Angular Position

5.1 Control Design
For control of the angular position, we will work in the state-space domain. A state-
space model of the position process is given by

dx(t)
dt

=

[
−0.12 0

5 0

]
︸ ︷︷ ︸

A

x(t)+
[

2.25
0

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[
0 1

]︸ ︷︷ ︸
C

x(t),

where u is the control input, x1 is the angular velocity, x2 is the angular position, and y
is the measured position. The variables in the model are in the scale of 10 bits integers,
so you can directly implement the control parameters that you obtain for this model
to the real implementation. To make the control problem more interesting, we assume
that the velocity is not directly measurable on the process.

5.1.1 Assignment 5

Using MATLAB, sample the process description with the interval h = 0.05 and then
design a state-feedback controller

u(k) = lrr(k)−Lx(k)

so that the (discrete-time) closed-loop poles are placed in 0.8± 0.1i and so that the
static gain from r to y is 1. �

To obtain a controller with integral action, we assume that there is a constant dis-
turbance v acting on the input of the process. The augmented sampled system then
becomes [

x(k+1)
v(k+1)

]
=

[
Φ Γ

0 1

]
︸ ︷︷ ︸

Φe

[
x(k)
v(k)

]
︸ ︷︷ ︸

xe(k)

+

[
Γ

0

]
︸︷︷︸

Γe

u(k)

y(k) =
[
C 0

]︸ ︷︷ ︸
Ce

[
x(k)
v(k)

]

5.1.2 Assignment 6

Using MATLAB, design an observer

x̂e(k+1) = Φex̂e(k)+Γeu(k)+Ke
(
y(k)−Cex̂e(k)

)
for the augmented system so that the (discrete-time) observer poles are placed in 0.6±
0.2i and 0.55. �
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5.2 Implementation Structure
Using the information from the observer, we have the augmented control law

u(k) = lrr(k)−Lx̂(k)− v̂(k)

Now let

Φ =

[
φ11 φ12
φ21 φ22

]
, Γ =

[
γ1
γ2

]
, L =

[
l1 l2

]
, Ke =

k1
k2
kv


The complete controller to be implemented can then be written as

u(k) = lrr(k)− l1x̂1(k)− l2x̂2(k)− v̂(k)

ε(k) = y(k)− x̂2(k)

x̂1(k+1) = φ11x̂1(k)+φ12x̂2(k)+ γ1
(
u(k)+ v̂(k)

)
+ k1ε(k)

x̂2(k+1) = φ21x̂1(k)+φ22x̂2(k)+ γ2
(
u(k)+ v̂(k)

)
+ k2ε(k)

v̂(k+1) = v̂(k)+ kvε(k)

5.3 Floating-Point Implementation
5.3.1 Assignment 7

Implement the position controller in C using floating-point constants and float vari-
ables. Remember to switch the output switch to the angular position and test your
controller. �

5.4 Fixed-Point Implementation
5.4.1 Assignment 8

For the fixed-point implementation, we will use 16-bit wordlength (N = 16). Study the
controller coefficients and select a suitable number of fractional bits n (the same for all
coefficients). Convert the controller coefficients to fixed-point representation. �

5.4.2 Assignment 9

Make a fixed-point implementation of the position controller in C using integer con-
stants and int16_t and int32_t variables (the latter only for the intermediate results).
Again, for simplicity, assume zero fractional bits for all the controller states.

Execute the model and test your controller. Can you notice any performance dif-
ference from the floating-point case? �
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