
Solutions to System Identification exam March 11, 2005.

1 a. From the definition we get:

γ 2(ω ) = hSyu(iω )h2
Suu(iω )Sy y(iω )

Using the relations Syu(iω ) = G(iω )Suu(iω ) and Sy y(iω ) = hG(iω )h2Suu(iω )+
Snn(iω ) and the fact that uk is uncorrelated with nk we obtain:

γ 2(ω ) = hG(iω )h2S2
uu(iω )

Suu(iω )(hG(iω )h2Suu(iω ) + Snn(iω ))

= 1

1 + Snn(iω )
hG(iω )h2 Suu(iω )

.

Consequently, γ (ω ) is close to 1 when the noise is small compared to the

input signal and close to 0 when the noise is large compared to the input

signal.

b. By looking at the coherence function plot, we see that any model derived

from this identification data will only be valid up to roughly 6Hz, or 12π
radians per second. The reasons for this can be found in the input auto­

spectrum Suu, which shows that the input signal power drops off sharply

at around 6Hz. It is likely that a controller which has been designed using

this model will be poor if the closed loop bandwidth is chosen higher than

6Hz.

c. Increasing the frequency content of the input signal for frequencies above

6Hz should result in a model which is valid for higher frequencies.

2.

λ = eln 0.15/100 = 0.9812

3. The likelihood function is given by:

L(θ) =
N∏

k=2

f (ε k) =
N∏

k=2

1

σ
√

2π
e−ε 2

k/2σ 2 = 1

(σ
√

2π )N−1

N∏

k=2

e−ε 2
k/2σ 2

The log likelihood function is then:

log L(θ ) = −(N − 1) log(σ
√

2π ) −
N∑

k=2

ε 2
k

2σ 2

where ε k = yk − φ T
k θ . Since the first term on the right hand side is inde­

pendent of θ , we seek to maximize the second term:

−
N∑

k=2

(yk − φ T
k θ)2

2σ 2
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This is equivalent to minimizing the cost function:

J(θ) =
N∑

k=2

(yk − φ T
k θ)2

which is the same as the Least Squares cost function. We can conclude

that the ML and LS estimates are the same when the noise is normally

distributed.

4 a. The closed loop system step response should be at least sampled 5­10 times

during it’s rise time. In our case we have around 100 samples during the

rise time.

b. Start by checking the data manually via plots.

• remove outliers

• linear trends and non­zero mean

This should be done before the identification procedure starts.

c. The data can be divided into three parts

• data with transients

• identification data

• validation data

The amplitude should be chosen as large as possible in order to achieve a

good signal­to­noise ratio and to overcome problems with friction. However,

the amplitude may not be chosen larger than the range in which the linea­

rity assumption holds. (See the section on preliminary experiments above.)
Typically saturations give an upper bound on the amplitude of the input

signal. The mean value is in many cases non­zero in order to reduce fric­

tion problems or to give a linearized model around a stationary point with

u0 �= 0.

Let p = 2n denote the number of parameters in the models M and N the

number of data points.

The Akaike information criterion gives

AIC(p) = log V (θ̂) + 2p

N
= [0.4900 0.0400 0.0295 0.0287 0.0381]

The final prediction error criterion gives

FPE(p) = N + p

N − p
V (θ̂) = [1.6323 1.0408 1.0300 1.0292 1.0389]

The suitable number of parameters are 8.
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6 a. A balanced realisation has ‘balanced’ observability and reachability proper­

ties, that is to say the Gramians P and Q are equal.

b. For the given state­space realization {Φ, Γ, C}, direct calculations give

C(zI − Φ)−1Γ = H(z)

c. For a balanced realization, the asymptotic reachability Gramian P is equal

to the asymptotic observability Gramian Q. The diagonal matrix Σ = P = Q

fulfills the discrete­time Lyapunov equations

P = ΦPΦT + ΓΓT

Q = ΦT QΦ + CT C

It can be seen that the given state­space realisation is balanced since Φ is

symmetric and Γ = CT . Solving the first equation:

[
p11 0

0 p22

]
=

[ −0.05698 −0.1914

−0.1914 −0.643

] [
p11 0

0 p22

] [ −0.05698 −0.1914

−0.1914 −0.643

]

+
[ −0.9998

0.01877

] [ −0.9998

0.01877

]T

gives:

Σ = P = Q =
[

1.0052 0

0 0.0634

]

d. Since one of the eigenvalues of Σ is much larger than the other, it is advisab­

le to reduce the model. The state corresponding to the smaller eigenvalue

will be removed by setting its dynamics to zero. By solving for x2 and sub­

stituting into the equation for x1 we obtain:

x1(k + 1) =
(

−0.05698 + 0.19142

1 + 0.643

)
x1(k) +

(
−0.9998 − 0.1914 ⋅ 0.01877

1 + 0.643

)
u(k)

= −0.0347x1(k) − 1.002u(k)

y(k) =
(

−0.9998 − 0.01877 ⋅ 0.1914

1 + 0.643

)
x1(k) + 0.0018772

1 + 0.643
u(k)

= −1.002x1(k) + 0.0002144uk
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7 a. The closed­loop system is given by

Gcl(s) = ĜP

1 + GC ĜP

= (s + 1)(s + 3)
(s + 2)(s + 3)(s + 4) + (s + 1)

=
(s+1)

(s+2)(s+4)

1 + (s+1)
(s+2)(s+3)(s+4)

=
(s+1)

(s+2)(s+4)

1 + 1
(s+3)

(s+1)
(s+2)(s+4)

=
(s+1)

(s+2)(s+4)

1 + GC
(s+1)

(s+2)(s+4)
; ĜP = (s + 1)

(s + 2)(s + 4)

b. The main disadvantage with indirect identification is that any error in

GC(s) (including deviation from a linear regulator, due to input saturations

or anti­windup measurements) will be incorporated in directly to ĜP(s)

8. Explicit factorization of the Hankel matrix:




1 0.5 0.25

0.5 0.25 0.125

0.25 0.125 0.0625



 =




1

0.5
0.25



 [ 1 0.5 0.25 ] = O 3C 3

permits extraction of

xk+1 = Axk + Buk, A = 0.5, B = 1 (1)
yk = Cxk, C = 1 (2)
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