
Department of
AUTOMATIC CONTROL

FRTN35 System Identification
Final Exam October 25, 2017, 8am - 13pm

General Instructions
This is an open book exam. You may use any book you want, including the slides from the
lecture, but no exercises, exams, or solution manuals are allowed. Solutions and answers to
the problems should be well motivated. The exam consists of 5 problems. The credit for each
problem is indicated in the problem. The total number of credits is 25 points. Preliminary
grade limits:

Grade 3: 12 – 16 points
Grade 4: 17 – 21 points
Grade 5: 22 – 25 points

Results
The results of the exam will be posted at the latest November 8 on the notice-board on the
first floor of the M-building.
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1. Derive the ML estimate of the parameters b and c in the model

yk = buk−1 + c+ vk

based on a set of N measurements of y and u and where every element in the dis-
turbance process vk is normally distributed with mean zero and a unique and known
variance σ2

k

Show that the estimate is consistent.
(5 p)

Solution
The likelihood function is given by

L(θ̄) = fe(εn, . . . ,εN) =
N

∏
k=n

fe(εk) =

(
1√
2π

)N−n
(

N

∏
k=n

1
σ2

k

)
exp

(
−1

2

N

∑
k=n

ε2
k

σ2
k

)
where εk = yk −buk−1 − c. Further on, the log-likelihood function (without terms not
depending on the parameters) is given by

logL(θ̄) =−1
2

N

∑
k=n

(
yk −buk−1 − c

σk

)2

Hence, in order to maximize the log-likelihood with respect to a and b, it is sufficient
to minimize the loss function

J(b,c) =
N

∑
k=n

(
yk −buk−1 − c

σk

)2

This loss function is the same as we minimize when solving the least-squares problem,
with an additional weighting by σk. Let

R = E(vvT ) = diag(σ2
n , . . . ,σ

2
N)

then we can write the cost function like

J(b,c) = (Y −Φθ)>R−1(Y −Φθ)

with standard notation Y, Φ and θ . The minimizing θ is given by θ̂ =
(
Φ>R−1Φ

)−1
Φ>R−1Y .

To show consistency, we start with determining the bias:

θ̂ =
(

Φ
>R−1

Φ

)−1
Φ

>R−1Y

=
(

Φ
>R−1

Φ

)−1
Φ

>R−1(Φθ + v)

= θ +
(

Φ
>R−1

Φ

)−1
Φ

>R−1v

As E{
(
Φ>R−1Φ

)−1
Φ>R−1v}= 0 since the regressors and noise are uncorrelated we

can conclude that E{θ̂} = θ and the estimate is unbiased. For consistency, we also
prove vanishing variance:

E{(θ̂ −θ)(θ̂ −θ)>}= E{(Φ>R−1
Φ)−1

Φ
>R−1vv>R−1

Φ(Φ>R−1
Φ)−>}

= E{Φ
−1vv>Φ

−>}
= E{(Φ>R−1

Φ)−1}
= (Φ>R−1

Φ)−1
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where the last equality holds if v and Φ are uncorrelated. As N → ∞, we have

E{(Φ>R−1
Φ)−1}→ 0

with calculations analogous to those performed in home assignment 2. (5 p)

2. You have performed a double step-response experiment and obtained output data as
shown in Figure 1. ((4 - number of insufficient answers) p)

0 100 200 300 400 500
Sample

-1

0

1

2

y
Step response

Figure 1 Output data from the experiment performed in problem 2.

a. Discuss if the sampling rate has been sufficiently high to capture the dynamics.

b. How complex model can you reasonably fit to the data from the experiment per-
formed?

c. What measures would you take before you fit a model to the data?

d. Cross validation is an important part of the model validation process. Discuss how
you would perform cross validation with the data obtained.

• How would you divide the data?

• What metrics would you calculate for validation purposes if the intended usage
of the model is

1. Prediction
2. Simulation

e. Discuss how to choose the amplitude of the input signal for an identification experi-
ment.

Solution

a. The closed loop system step response should be at least sampled 5-10 times during it’s
rise time. In our case we have plenty of samples per time constant and thus sufficiently
fast sampling.

b. From a single step-response experiment, one can estimate the dominating time con-
stant, the static gain and the damping. The experiment performed contains two step
responses, but since the transient response of the first is allowed to vanish before the
second step is applied, the second step only provides better statistical properties to the
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estimate from the first, and doesn’t really allow for estimation of more parameters.
Hence, a transfer function model on the form

K
ω2

s2 +2ζ ω +ω2

would be a good choice. Indeed, the system that generated the step response is given
by

1
s2 +2 ·0.2 ·1s+1

c. Start by checking the data manually via plots. In this case the data exhibits severe out-
liers which has to be removed, either manually or by some automatic outlier removal
procedure. Failure to remove outliers will cause a severe bias if models are fit with a
quadratic cost function (noise assumed to be Gaussian). This should be done before
the identification procedure starts.

d. The data can be divided into two parts

• identification data

• validation data

The response from the first input step can be used for identification. After 300 samples,
the oscillations from the first step have vanished and the second step begins. It is thus
advisable to use data before 300 samples for identification and data after 300 samples
for validation.
If the model is to be used for the prediction, a natural metric to use is prediction error
variance. If, however, the model is to be used for simulation, a more suitable metric is
the mean squared simulation error, i.e., the mean of squared errors between the output
data and the data obtained when the model is simulated forward in time, starting from
the first data point with access to the input signal only.

e. The amplitude should be chosen as large as possible in order to achieve a good signal-
to-noise ratio and to overcome problems with friction. However, the amplitude may
not be chosen larger than the range in which the linearity assumption holds. (See the
section on preliminary experiments above.) Typically saturations give an upper bound
on the amplitude of the input signal. The mean value is in many cases non-zero in
order to reduce friction problems or to give a linearized model around a stationary
point with u0 6= 0. ((4 - number of insufficient answers) p)

3. After having performed a system identification experiment with a highly exciting in-
put signal, you observe a coherence function that is very close to 1 for all frequencies
of interest. What does this tell you about the system? (1 p)
How do you determine an adequate model order for the system if you are fitting

1. An ARMAX model by means of pseudo-linear regression.

2. A state-space model by means of subspace-based identification.

Name at least a few methods in each case. (1 p)

Solution

4



a. A coherence function close to one indicates that the relationship between input and
output data is linear, and that most of the energy contained in the output spectrum is
explained by the input, i.e., there is no significant noise influence. (1 p)

b. Since the coherence is close to one, we can assume that the system is linear.
For an ARMAX model fit by least-squares, we can

• Perform an F-test on the prediction error variance of two models of varying
complexity.

• Calculate the confidence bounds of the estimated parameters. Parameters that
are not significantly different from zero are not motivated by the data.

For the state-space model, the model order is indicated by the number of significant
singular values of the Hankel matrix constructed from the Markov parameters. The
Markov parameters can be calculated from an initial high-order transfer function fit
to the data. Furthermore, the F-test can be used also for state-space models obtained
through subspace-based identification.
Cross validation can always be used to select between two models. The model that
performs the best on the validation data is to be preferred.

(1 p)
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4. Consider the following identification problem

minimize
a,b

||yk+1 −ayk −buk||

subject to uk =−Lyk

where uk = −Lyk is a feedback controller with a known constant feedback L and the
vector θ = [a,b].

a. Determine a vector v in parameter space, such that the addition of αv to θ

θ̄ = αv+θ

where α is any real scalar, is invisible in the data, i.e., it is impossible to distinguish
the parameter vector θ from θ̄ using the observed data. Comment on how this affects
the estimation of the parameter vector, especially, what is the worst-case scenario?

(1 p)

b. Consider the case where you add the term ε||θ || to the cost function, where ε is a very
small number. Explain intuitively how this eliminates the problem of unidentifiability
encountered in a., draw a figure to illustrate the level curves of the original cost func-
tion and the level curves of ε||θ ||. What relation will hold between θ ∗ and v in this
case? Indicate this relation in the figure.

(2 p)

Solution

a. By inserting the feedback law u =−Ly in the model equation, we get

yk+1 = (a−bL)yk

and we see that we can only estimate the linear combination (a−bL), i.e., the addition
of any vector on the form v = α [L,1] for any scalar α to the parameter vector is made
invisible by the feedback.
Due to the feedback, there is no guarantee that the correct parameter vector will be
recovered. In the worst case, the estimate of θ may go to infinity along the line v
causing the estimation to fail. (1 p)

b. The added penalty term causes the solution to be the point along the line θ + v with
shortest distance to the origin, i.e., the vector θ ∗ will be perpendicular to v. The per-
pendicular to v is given by Lx1 + x2 = 0 ⇒ θ ∗ = β [L,−1] where the constant β is
chosen such that θ ∗ reaches θ + v. The relation between θ ∗ and v is θ ∗ · v = 0, i.e.,
they are perpendicular.
The level curves of the original cost function are lines parallel to θ + v whereas the
level curves of ε||θ || are concentric circles centered at the origin. At θ ∗, the tangents
of the circles will be parallel to the line v. (2 p)

5. Consider a dynamical model on the form

A(z)Y (z) = B(z)U(z)+C(z)N(z) (1)

where Y,U,N are the z-transforms of the output, input and noise respectively.
(2 p)

6



a. Modify the block diagram of Figure 2 such that it reflects a control loop closed around
the system (1) with a controller G. Make sure the polynomials are visible in your
figure. Use your figure to reason about whether the noise in (1) can be characterized
as a load, input or measurement disturbance.

b. Suggest a method for estimating the parameters in all polynomials A,B,C. Argue why
the suggested method is unbiased.

G P +

−1

+R E U

N

Y

Figure 2 Block diagram of control loop. R,E,U,N,Y are the reference, error, input, noise and output
signals respectively.

Solution
(2 p)

a.

G B + 1
A

C

−1

+R E U

N

Y

The noise
is clearly filtered through the 1/A transfer function before it is visible in the out-
put, it can hence not be characterized as measurement noise. It is acting before the
B-polynomial and is thus not acting on the process input, thus we conclude that N
in this case is likely describing a wide-spectrum load disturbance, e.g., the fluctua-
tions of road inclination disturbing the velocity of a car, where the C polynomial is of
low-pass character, indicating that the road is not changing with too high frequency.

b. One can utilize either pseudo-linear regression or the prediction error method. PLR
works since any rational function can be approximated by its Taylor series expansion.
The estimation of the noise process is asymptotically unbiased as the order of the
expansion increases. The prediction error method will in this case search a non-convex
loss surface and may suffer from local minima, but have the potential to find the global
optimum, in which case the estimate will be unbiased.
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6. While estimating a model for a resonant system, you observe the impulse response
shown in Fig. 3.

0 1 2 3 4 5

Time (s)

-2

0

2

Impulse response

Figure 3 Impulse response in problem 6.

You determine that the impulse response has the nonlinear form

y(t) = Acos(ωt)e−at + e(t) (2)

for some parameters A,ω and a.

a. Determine a suitable identification procedure to find the parameters A,a,ω that mini-
mizes the sum of squared errors between the measured impulse response data and the
model predictions.
Discuss the merits and drawbacks of your suggested strategy.
Hint: You might recognize the form of Equation (2). (2 p)

b. If you are given the chance to send an arbitrary input signal to the system, determine
a more suitable method of identifying a model for the system.
Discuss how and why this strategy might improve the results as compared to the strat-
egy in the previous subproblem. (2 p)

Solution
We observe that the impulse response equation is an exponentially decaying sinusoid,
more specifically the solution to the differential equation

ÿ+2aẏ+(a2 +ω
2)y = A(u̇+au)

corresponding to the Laplace transform

A
s+a

(s+a)2 +ω2 = A
s+a

s2 +2as+a2 +ω2

The system giving rise to the observed impulse response is thus a linear system which
can be estimated with any of the methods treated in the course!
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a. The impulse response equation is nonlinear in the parameters. One approach is to
formulate the least-squares cost function and optimize it using gradient descent, this
requires a good initial guess, which in this case is slightly tricky to obtain since the
decay rate is hard to determine due to the noise. The period of the oscillation is rather
easily observable. Once having identified the parameters in the impulse response, we
have a linear model of the process given by the transfer function.
Since the system is linear, any method for impulse response estimation can be used.
The gradient descent method might be a poor choice due to the high noise content
which might lead to the algorithm getting stuck in a local minimum. Another approach
is to form a Hankel matrix with the Markov parameters which, through the singular
value decomposition, can be factorized to obtain the matrices A,B and C in a linear
state-space model. (2 p)

b. In this case we can send any wide-band signal as input and use, e.g., least-squares
estimation or subspace-based methods to find the parameters of a linear model of
second order. This will further allow for an arbitrary measurement duration which can
improve the covariance of the estimate for consistent estimation methods. Especially,
a longer duration experiment with continuous excitation on the input allows for more
accurate identification of the system zeros and gain. (2 p)
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7. Figure 4 shows the squared coherence function γ2(ω) and the input and output au-
tospectra Suu and Syy from an identification experiment conducted on the system given
by:

Y (s) = P(s)U(s)+N(s)

where the input U(s) and noise N(s) are known to be uncorrelated. The aim of the
identification is to design a controller for the process. The data sets {uk} and {yk}
from the experiment are used to obtain an ARX model P(z) of the system, shown in
Figure 5.
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Figure 4 Input, output and cross spectra Suu, Syy and Syu as well as squared coherence function
γ2(ω)

After designing a simple P-controller, the sensitivity function is drawn (shown in Fig-
ure 5). Given the coherence function from the estimation, is it advisable to use the
designed controller? If not, what measures can be taken to improve upon 1) The iden-
tification procedure, 2) the control design? (3 p)

Hint: The sensitivity function is given by
1

1+PG
with the control loop depicted in

Figure 2.

Solution
The input autospectrum indicates that there is equal excitation for a wide band of
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Figure 5 Bode diagrams of the identified process model and the sensitivity function obtained after
controller design.

frequencies. The coherence function does however display a significant loss of co-
herence for frequencies around 2rad/s, indicating that there is a strong, narrow-band
noise component acting on the output of the system.
To improve upon the identification procedure, one can either ensure that there is higher
energy in the input signal at the affected frequency or at the very least, filter the mea-
surement signal to get rid of some of the noise energy before performing the esti-
mation since the peak in the bode diagram at the noise frequency indicates that the
identification has been affected. Another improvement is to identify a model on the
form

Y (s) = P(s)U(s)+G(s)N(s)

where G(s) explicitly models the noise spectrum.
With the proposed controller design, the sensitivity function displays a very high am-

plification of noise around exactly 2rad/s (the sensitivity function
1

1+PG
is the trans-

fer function from N to Y ). It is thus not advisable to use the proposed controller design.
To mitigate the issue, a control design which results in a smaller sensitivity function
around the noise affected frequency is required, such as a controller with a notch filter
tuned to the noise frequency or a controller with significantly higher gain. (3 p)
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8. Determine if the least-squares estimates of the model parameters in the following
systems will be consistent when the input signal u is white noise. In all cases, the
noise processes ek and vk have the characteristics

ek ∼ N(0,σ2) E
{

eie j
}
= σ

2
δi j

vk ∼ N(0,σ2) E
{

viv j
}
= σ

2e−(i− j)2

You may (correctly) refer to results obtained during the course home assignments
in your solutions, i.e., you do not have to prove the asymptotic properties, but your
answer must be properly motivated.

(2 - (number of insufficient answers) p)

a.
yk+1 = ayk +buk + vk

b.
yk+1 = ayk +buk + ek

c.
yk = b1uk−1 +b2uk−2 + ek

d.
yk = b1uk−1 +b2uk−2 + vk

Solution
We start by noticing that ek is a white noise process whereas vk is a colored noise
process. (2 - (number of insufficient answers) p)

a. In this case there will be a bias due to the feedback of colored noise.

b. This is a standard case that was proved bias free in the home assignments.

c. This is another simple case where there will be no bias.

d. This case is also bias free. The noise process is colored, but there is no feedback,
hence, there will be no bias.
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