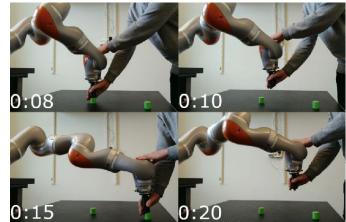
RL Projects at the Robotlab

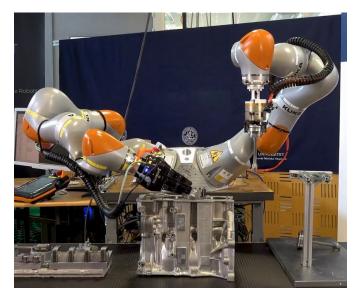
- Learning Imitation of Demonstrated
 Behaviors with RL
- 2. Learning Tasks with Dual-Arm Coordination
- Safe Learning of Robot Behaviors with Black-box policies (neural nets)
- Knowledge-supported reasoning for RL scenarios



Learning Imitation of Demonstrated Behaviors with RL

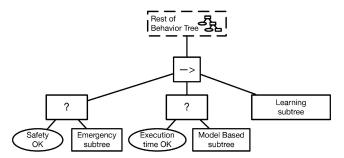
- Demonstrate behaviors rather than programming it
- Lower entry hurdle to robot usage
- Just re-executing it does not necessarily give good and robust performance

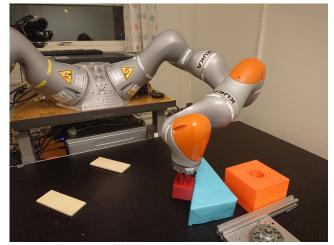
Goal: Demonstrate behaviors and use RL to learn reliable parameters



Learning Tasks with Dual-arm Coordination

- Dual-arm tasks require special coordination and control
- Industry requires interpretable behaviors
- RL to learn the coordination for a robust and collision-free

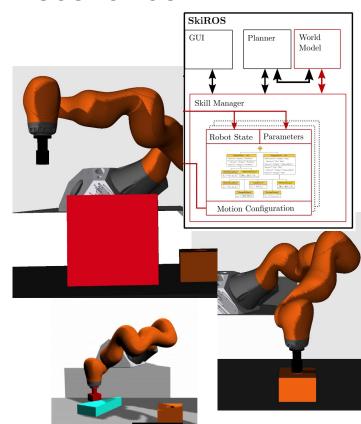

Goal: Use RL to learn dual-arm behaviors that minimize execution time and fulfill safety guarantees



Safety Constraints for Reinforcement Learning (RL)

- RL can be dangerous for
 - The robot itself
 - Tools and the environment
- Safety rules can be formulated and checked
 - Avoidance of areas
 - Maximum forces
- Allows to learn non-interpretable policies

Goal: Learn black-box policies (neural networks) for manipulation tasks in simulation and on a real robot



Knowledge-supported reasoning for RL scenarios

- Hybrid approaches of data-driven methods + traditional AI techniques
- We can use planning to solve tasks
- Some tasks need learning through RL
 - Create RL scenarios

Goal: Explore the world model and use reasoning to automatically create RL scenarios

Robotics at the Robotlab

- Learning Imitation of Demonstrated Behaviors with RL
- Learning Tasks with Dual-Arm Coordination
- 3. <u>Safe Learning of Robot Behaviors with Black-box</u>
 <u>policies (neural nets)</u>
- 4. Knowledge-supported reasoning for RL scenarios

Matthias Mayr

