

How did you decide what to eat last night?

Did you take the opportunity to try something new?

Or did you stay safe and order one of your old favorites?

The Exploration-exploitation Dilemma

In the first case, you were probably using this part of your brain:

If the second case, this is the part that you used:

[Understanding the exploration-exploitation dilemma: An fMRI study..., Laureiro-M, et al. (2015)]

Dual Control - Alexander A. Feldbaum 1913-69

Control should be probing as well as directing

A. A. Feldbaum, Dual control theory, Avtomat. Telemekh., 1960, 21:9, 21:11

R. E. Bellman Dynamic Programming, Academic Press 1957

Important differences from bandit problems:

- Control action can impact future learning opportunities
- Measurements often incomplete
- Unmodelled dynamics

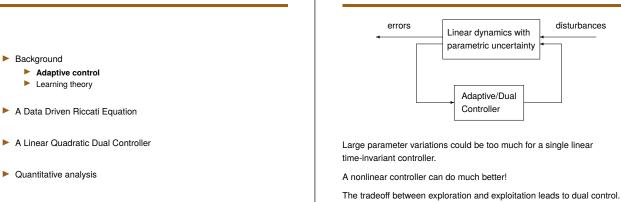
Background

Outline

- A Linear Quadratic Dual Controller
 - Quantitative analysis

(Robustness degree) \geq (Excitation level) \times (Degree of stabilizability)

Dual Control for Robustness



The Exploration-Exploitation Dilemma

Exploration: Trying out new options that may lead to better future outcomes.

Exploitation: Choosing the best-known option based on past experiences

In Evolutionary biology: What mutation rate is good for survival? In Management: How much should a company spend on R&D? In Science: How much time should you spend reading past work?

Model from Computer Science: Analysis of multi-armed bandits.

Outline of Today's Presentation

- Background
- A Data Driven Riccati Equation

$$\Sigma_t (Q - I) \Sigma_t = \hat{\Sigma}_t^\top \min_K \left(\begin{bmatrix} I \\ K \end{bmatrix}^\top Q \begin{bmatrix} I \\ K \end{bmatrix} \right) \hat{\Sigma}_t$$

Linear Quadratic Optimal Control

Given matrices A, B, find a control policy u = Kx to

minimize
$$\sum_{k=0}^{\infty} \left(|x|^2 + |u|^2 \right)$$

subject to $x_{k+1} = Ax + Bu$

The infinite horizon optimal cost $|x|_P^2$ solves

$$|x|_{P}^{2} = \min_{u} \left(|x|^{2} + |u|^{2} + |Ax + Bu|_{P}^{2} \right)$$
 (Riccati equation)

The minimizing argument gives a linear policy: u = Kx.

The Riccati equation in terms of Q-function

$$\begin{bmatrix} x \\ u \end{bmatrix}^{\top} (Q - I) \begin{bmatrix} x \\ u \end{bmatrix} = x_{+}^{\top} \min_{K} \left(\begin{bmatrix} I \\ K \end{bmatrix}^{\top} Q \begin{bmatrix} I \\ K \end{bmatrix} \right) x$$

can be solved by collecting data:

$$\begin{bmatrix} x_0 & \dots & x_t \\ u_0 & \dots & u_t \end{bmatrix}^\top (Q-I) \begin{bmatrix} x_0 & \dots & x_t \\ u_0 & \dots & u_t \end{bmatrix}$$
$$= \begin{bmatrix} x_1 & \dots & x_{t+1} \end{bmatrix}^\top \min_K \left(\begin{bmatrix} I \\ K \end{bmatrix}^\top Q \begin{bmatrix} I \\ K \end{bmatrix} \right) \begin{bmatrix} x_1 & \dots & x_{t+1} \end{bmatrix}$$

If $(x_0, u_0), \ldots, (x_t, u_t)$ span all dimensions in \mathbb{R}^{n+m} , then this gives the optimal control law! Can we stop here? No. This is the start!¹

¹For linear quadratic Q-learning, see [Bradtke (1992)] and [Rizvi/Lin (2019)].

Comments on the Data Driven Riccati Equation

- Unlike most reinforcement learning algorithms, memory is in \(\Sigma_t\) and \(\Sigma_t\), not in \(Q\). Linear dynamics of \(\Sigma_t\) and \(\Sigma_t\) simplifies analysis.
- When Σ_t is invertible, the data driven Riccati equation is algebraically equivalent to the standard Riccati equation for [Â_t B̂_t] := Σ̂_tΣ⁻¹_t.
- Hard to enforce stabilizability of (\hat{A}_t, \hat{B}_t) . Easy to bound Q.
- Excitation directions of Σ_t determine the accuracy of Q and K. However, only controllable state directions matter.

Outline

- Background
 - Adaptive control
 - Learning theory
- A Data Driven Riccati Equation
- A Linear Quadratic Dual Controller
- Quantitative analysis

The Riccati equation in terms of Q-function

$$|x|_{P}^{2} = \min_{u} \underbrace{\left(|x|^{2} + |u|^{2} + |Ax + Bu|_{P}^{2}\right)}_{\begin{bmatrix} x \\ u \end{bmatrix}^{\top} Q \begin{bmatrix} x \\ u \end{bmatrix}}$$

can be rewritten in terms of Q:

$$\begin{bmatrix} x \\ u \end{bmatrix}^{\top} (Q - I) \begin{bmatrix} x \\ u \end{bmatrix} = (Ax + Bu)^{\top} \underbrace{\min_{K} \left(\begin{bmatrix} I \\ K \end{bmatrix}^{\top} Q \begin{bmatrix} I \\ K \end{bmatrix} \right)}_{P} (Ax + Bu)$$

and in model free form

$$\begin{bmatrix} x \\ u \end{bmatrix}^{\top} (Q - I) \begin{bmatrix} x \\ u \end{bmatrix} = x_{+}^{\top} \min_{K} \left(\begin{bmatrix} I \\ K \end{bmatrix}^{\top} Q \begin{bmatrix} I \\ K \end{bmatrix} \right) x_{+}$$

The minimizing K gives an optimal policy u = Kx.

A Data Driven Riccati Equation

Multiply

$$\begin{bmatrix} x_0 \dots x_{t-1} \\ u_0 \dots u_{t-1} \end{bmatrix}^\top (Q-I) \begin{bmatrix} x_0 \dots x_{t-1} \\ u_0 \dots u_{t-1} \end{bmatrix} = \begin{bmatrix} x_1 \dots x_t \end{bmatrix}^\top \min_K \left(\begin{bmatrix} I \\ K \end{bmatrix}^\top Q \begin{bmatrix} I \\ K \end{bmatrix} \right) \begin{bmatrix} x_1 \dots x_t \end{bmatrix}$$

from the left by

$$egin{bmatrix} \lambda^t x_0 & \ldots & x_{t-1} \ \lambda^t u_0 & \ldots & u_{t-1} \end{bmatrix}$$

its transpose from the right. This gives a data driven Riccati equation:

$$\Sigma_t (Q - I) \Sigma_t = \hat{\Sigma}_t^\top \min_K \left(\begin{bmatrix} I \\ K \end{bmatrix}^\top Q \begin{bmatrix} I \\ K \end{bmatrix} \right) \hat{\Sigma}_t$$

where λ is a forgetting factor and

$$\Sigma_t = \sum_{k=0}^{t-1} \lambda^{t-1-k} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}^\top, \qquad \hat{\Sigma}_t = \sum_{k=0}^{t-1} \lambda^{t-1-k} x_{k+1} \begin{bmatrix} x_k^\top & u_k^\top \end{bmatrix}.$$

Excitation and Dual Control

- 1985 Bai/Sastry **Persistency of excitation**, sufficient richness and parameter convergence in discrete time adaptive control
- 1986 Green/Moore, Persistence of excitation in linear systems
- 1988 Mareels/Gevers Persistency of excitation criteria for linear, multivariable, time-varying systems
- 2005 Willems et.al, *A note on* **persistency of excitation** (With the "fundamental lemma" recently used for data-driven control)
- 1986 Åström/Helmersson, Dual control of an integrator with unknown gain
- 1995 Wittenmark, Adaptive dual control methods: An overview
- 2018 Mesbah, Stochastic model predictive control with active uncertainty learning: A Survey on dual control
- 2021 Flayac/Nair/Shames, Nonlinear **dual control** based on fast moving horizon estimation and model predictive control with an observability constraint

Problem Formulation

Define \mathcal{M}_eta as the set of all pairs (A,B) such that there exists Q with $I \preceq Q \preceq eta^2 I$ and

$$Q - I = \begin{bmatrix} A & B \end{bmatrix}^{\top} \min_{K} \left(\begin{bmatrix} I \\ K \end{bmatrix}^{\top} Q \begin{bmatrix} I \\ K \end{bmatrix} \right) \begin{bmatrix} A & B \end{bmatrix}$$

Find a controller μ : $(x_0, \ldots, x_t) \mapsto u_t$, that stabilizes the system

$$x_{t+1} = Ax_t + Bu_t + w_t \qquad t \ge 0$$

for all $(A, B) \in \mathcal{M}_{\beta}$ subject to a bound on disturbances w_t .

Optimal state feedback behavior is expected as $\lim_{t\to\infty} w_t = 0$.

The Linear Quadratic Dual Controller

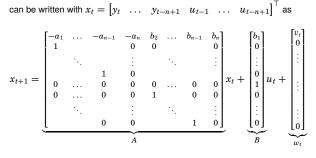
$$\begin{split} \boldsymbol{\Sigma}_{t+1} &= \lambda \underbrace{\left[\sum_{\substack{tx \\ \Sigma_{tx} \\ \Sigma_{tx} \\ \Sigma_{t} \\ \Sigma_{t} \\ \end{array}}^{\boldsymbol{\Sigma}_{tx} \\ \Sigma_{t} \\ \boldsymbol{\Sigma}_{t} \\ \boldsymbol{\Sigma}_{$$

The states Σ_t , $\hat{\Sigma}_t$, collect correlation data with forgetting factor $\lambda \in [0, 1]$. Controller map **K** gives K_t . **E** provides direction for excitation/exploration.

Output Feedback

The input-output model

$$y_t + a_1 y_{t-1} + \dots + a_n y_{t-n} = b_1 u_{t-1} + \dots + b_n u_{t-n} + v_t$$



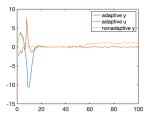
In practice: Other filters of past states and inputs give better conditioning!

Example 2: Add a Zero at z=2

Simulate an input-output model with transfer function $(1-z/2)(z-1)^{-2}$.

$$y_{t+1} = 2y_t - y_{t-1} - 0.5u_{t-1}u_t + u_{t-1}$$
 + white noise

Transients are bigger. That's all:



But can anything be proved rigorously?

Main Result

(Robustness degree) \geq (Excitation level) \times (Degree of stabilizability)

The Controller and Excitation Maps

Let $Q_t \succeq I$ be a solution to the "data driven Riccati equation"

$$\hat{\Sigma}_{t}^{\top} \min_{K} \left(\begin{bmatrix} I \\ K \end{bmatrix}^{\top} Q_{t} \begin{bmatrix} I \\ K \end{bmatrix} \right) \hat{\Sigma}_{t} = \Sigma_{t} \left(Q_{t} - I \right) \Sigma_{t}$$

and let $\mathbf{K}(\Sigma_t, \overline{\Sigma}_t)$ be a minimizing value of K.

Let $\Sigma_t^{uu} - \Sigma_t^{ux} (\Sigma_t^{xx})^{-1} \Sigma_t^{xu}$ have eigenvalues $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m \ge 0$ with corresponding eigenvectors e_1, \ldots, e_m . For $v \in \mathbb{R}^m$ with $v = v_1 e_1 + \cdots + v_m e_m$, define the *excitation map*

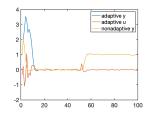
$$\mathbf{E}(\Sigma, v) := \operatorname{sign}(v_m) e_m$$

Example 1: A Double Integrator

Simulate an input-output model with transfer function $(z-1)^{-2}$:

 $y_{t+1} = 2y_t - y_{t-1} + u_{t-1} +$ white noise

with unit initial value and step reference change at t = 50:

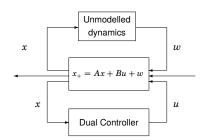


After initial adaptation, the adaptive controller follows the optimal perfectly.

Outline

- Background
- A Data Driven Riccati Equation
- A Linear Quadratic Dual Controller
- Quantitative analysis

Robustness degree



Consider $x_{t+1} = Ax_t + Bu_t + w_t$ with the following bounds:

$$\Sigma_t^{ww} \preceq \gamma^{-2} \Sigma_t^{xx}, \qquad \qquad 0 \preceq \begin{bmatrix} (\Sigma_t^{xx})^2 & \Sigma_t^{xw} \\ \Sigma_t^{wx} & \gamma^{-2}I \end{bmatrix}.$$

"Robustness degree" is the maximal γ^{-1} for which stability is guaranteed.

Excitation level

Main Theorem

The system is said to have excitation level
$$\delta \in (0, 1)$$
 if

$$\begin{split} & \Sigma_t^{xx} \quad \Sigma_t^{xu} \\ & \Sigma_t^{ux} \quad \Sigma_t^{uu} \\ \end{split} \ge & \delta \begin{bmatrix} \Sigma_t^{xx} & 0 \\ 0 & \|\Sigma_t\|I \end{bmatrix}. \end{split}$$

for all $t \ge t_0$, where $t_0 \ge n + m$.

Remark:

This is a *quantative* notion of excitation, rather than then traditional *qualitative* one.

Suppose that $(A, B) \in \mathcal{M}_{\beta}$ with Q and K being the corresponding solutions to the Riccati equation. If the excitation level is δ , then the linear quadratic dual controller connected to $x_+ = Ax + Bu + w$ gives exponential stability provided that

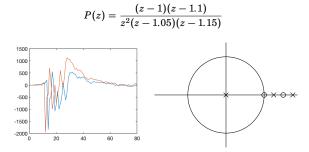
$$\gamma^{-1} \leq \underbrace{(\text{Excitation level})}_{\delta} \times \underbrace{(\text{Degree of stabilizability})}_{\left[2\sqrt{2}\beta(\beta^2+1)^2\right]^{-1}}$$

Moreover, for $t \ge t_0$, the closed loop system satisfies

$$\begin{split} & x_{t+1} - w_{t+1} \\ & K_{t+1} x_{t+1} \end{bmatrix}^{\top} Q \begin{bmatrix} x_{t+1} - w_{t+1} \\ & K_{t+1} x_{t+1} \end{bmatrix} \leq \alpha \left(|x_t|^2 + |K_t x_t|^2 | \right) + \begin{bmatrix} x_t \\ & K_t x_t \end{bmatrix}^{\top} Q \begin{bmatrix} x_t \\ & K_t x_t \end{bmatrix} \\ & \text{here } \alpha := 1 - 2\sqrt{2}\beta (\beta^2 + 1)^2 \gamma^{-1} \delta^{-1}. \end{split}$$

Proof ideas Outline • Use *w*-bounds and degree of excitation to verify that Q_t is close to Q_t (in controllable state directions). • Background • This gives that K_t is close to the optimal K. • A Data Driven Riccati Equation • Uncontrollable state directions are fine by degree of stabilizability. • A Linear Quadratic Dual Controller • Stability and dissipativity follows from corresponding properties of the optimal controller for known A and B. • More examples and conclusions • Example 3: A System Hard to Control Example 4: Control based on absolute value

Even systems which require unstable controllers seem to work fine:

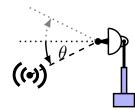


But other examples call for other solutions...

Conclusions

- Adaptive and dual control should be revisited. Parameterization using *Q*-matrix avoids many past difficulties. Åström/Wittenmark's missing theory is within sight!
- Natural step from data driven Riccati equation to MPC.
- Conservative bounds should be improved.
 Use statistical methods to further reduce conservatism.

See personal web page and [arxiv.org/abs/2312.06014]



Objective: Direct antenna towards target.

Measurement: Signal strength gives absolute value of θ .

Dual control:

Move antenna to learn sign of $\boldsymbol{\theta}$ at the expense of short term performance.

[Olle Kjellqvist arxiv.org/abs/2312.05156]

Thanks

