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How did you decide what to eat last night?

Did you take the opportunity to try something new?

Or did you stay safe and order one of your old favorites?

The Exploration-exploitation Dilemma

In the first case, you were probably using this part of your brain:

If the second case, this is the part that you used:

[Understanding the exploration–exploitation dilemma: An fMRI study..., Laureiro-M, et al. (2015)]

The Exploration-Exploitation Dilemma

Exploration:
Trying out new options that may lead to better future outcomes.

Exploitation:
Choosing the best-known option based on past experiences

In Evolutionary biology: What mutation rate is good for survival?

In Management: How much should a company spend on R&D?

In Science: How much time should you spend reading past work?

Model from Computer Science: Analysis of multi-armed bandits.

Dual Control - Alexander A. Feldbaum 1913-69

Control should be probing as well as directing

I A. A. Feldbaum, Dual control theory,
Avtomat. Telemekh., 1960, 21:9, 21:11

I R. E. Bellman Dynamic Programming,
Academic Press 1957

Important differences from bandit problems:

I Control action can impact future learning opportunities
I Measurements often incomplete
I Unmodelled dynamics
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(Robustness degree) ≥ (Excitation level) $ (Degree of stabilizability)
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Dual Control for Robustness

Adaptive/Dual
Controller

Linear dynamics with
parametric uncertainty

-

� �
�

errors disturbances

Large parameter variations could be too much for a single linear
time-invariant controller.

A nonlinear controller can do much better!

The tradeoff between exploration and exploitation leads to dual control.
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A Brief History of Adaptive Control

I Learn enough about a process and its environment for control
I Early work driven adaptive flight control 1950-1970.

I Several adaptive schemes, but no analysis
I Disasters in flight tests - the X-15 crash nov 15 1967

I Emergence of adaptive theory 1970-1980
I Model reference adaptive control (servo problem) from flight control
I The self tuning regulator (regulation problem) from process control

I Self tuning controllers on the market since 1985
I Relay Autotuning 1984

Adaptive Control — What Can We Learn?

Åstrom & Wittenmark 1995:
“Unfortunately, there is no collection of results that can be called a theory of
adaptive control in the sense specified.”
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Statistical Machine Learning

Tail and concentration inequalites in common with

I Mathematics (measure theory, combinatorics, analysis)
I Compressed sensing
I Statistical model selection
I Network Routing
I Pattern recognition

...

Very promising for use in system identification and adaptive control!

[Abbasi-Yadkori, Faradonbeh, Hazan, Dean, Jedra, Mania, Matni, Michailidis, Pappas,
Proutiere, Recht, Sandberg, Simchowitz, Szepesvari, Tu,Tsiamis, Tewari, Ziemann, ...]

(See Review in IEEE Control Systems Magazine December 2023!)

Optimal Control

Given functions f and � ≥ 0, find a control policy µ∗ to

minimize
∞∑
k=0

�(xk, µ∗(xk))

subject to xk+1 = f (xk, µ∗(xk))

The infinite horizon optimal cost J∗ solves the Bellman equation

J∗(x) = min
u

[
�(x, u)︸ ︷︷ ︸
first step

+ J∗( f (x, u))︸ ︷︷ ︸
future cost

]

The optimal policy is

µ∗(x) = arg min
u
[�(x, u) + J∗( f (x, u))] .

The Bellman equation in terms of Q-function

minimize
∞∑
k=0

�(xk, uk) subject to x+ = f (x, u)

The infinite horizon optimal cost J∗ solves the Bellman equation

J∗(x) = min
u
[�(x, u) + J∗( f (x, u))]︸ ︷︷ ︸

Q∗(x,u)

A model free writing of the Bellman equation is

Q∗(x, u) = �(x, u) +min
v

Q∗(x+, v)

A large number of reinforcement learning algorithms are based on
approximations of this equation.
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Linear Quadratic Optimal Control

Given matrices A, B, find a control policy u = Kx to

minimize
∞∑
k=0

(
pxp2 + pup2

)
subject to xk+1 = Ax+ Bu

The infinite horizon optimal cost pxp2P solves

pxp2P = min
u

(
pxp2 + pup2 + pAx+ Bup2P

)
(Riccati equation)

The minimizing argument gives a linear policy: u = Kx.

The Riccati equation in terms of Q-function

pxp2P = min
u

(
pxp2 + pup2 + pAx+ Bup2P

)
︸ ︷︷ ︸[

x
u

]s
Q
[
x
u

]

can be rewritten in terms of Q:

[
x
u

]s
(Q− I)

[
x
u

]
= (Ax+ Bu)smin

K

([
I
K

]s
Q
[
I
K

])
︸ ︷︷ ︸

P

(Ax+ Bu)

and in model free form[
x
u

]s
(Q− I)

[
x
u

]
= xs+min

K

([
I
K

]s
Q
[
I
K

])
x+

The minimizing K gives an optimal policy u = Kx.

The Riccati equation in terms of Q-function

[
x
u

]s
(Q− I)

[
x
u

]
= xs+min

K

([
I
K

]s
Q
[
I
K

])
x+

can be solved by collecting data:

[
x0 . . . xt
u0 . . . ut

]s
(Q− I)

[
x0 . . . xt
u0 . . . ut

]

=
[
x1 . . . xt+1

]smin
K

([
I
K

]s
Q
[
I
K

]) [
x1 . . . xt+1

]

If (x0, u0), . . . , (xt, ut) span all dimensions in Rn+m, then this gives the
optimal control law! Can we stop here? No. This is the start!1

1For linear quadratic Q-learning, see [Bradtke (1992)] and [Rizvi/Lin (2019)].

A Data Driven Riccati Equation

Multiply[
x0 . . . xt−1
u0 . . . ut−1

]s
(Q− I)

[
x0 . . . xt−1
u0 . . . ut−1

]
=

[
x1 . . . xt

]s min
K

([
I
K

]s
Q
[
I
K

]) [
x1 . . . xt

]
from the left by [

λtx0 . . . xt−1
λtu0 . . . ut−1

]
,

its transpose from the right. This gives a data driven Riccati equation:

Σ t(Q− I)Σ t = Σ̂st min
K

([
I
K

]s
Q
[
I
K

])
Σ̂ t

where λ is a forgetting factor and

Σ t =
t−1∑

k=0
λt−1−k

[
xk
uk

] [
xk
uk

]s
, Σ̂ t =

t−1∑

k=0
λt−1−kxk+1

[
xsk usk

]
.

Comments on the Data Driven Riccati Equation

I Unlike most reinforcement learning algorithms, memory is in Σ t and
Σ̂ t, not in Q. Linear dynamics of Σ t and Σ̂ t simplifies analysis.

I When Σ t is invertible, the data driven Riccati equation is algebraically
equivalent to the standard Riccati equation for

[
Ât B̂t

]
:= Σ̂ tΣ−1

t .

I Hard to enforce stabilizability of ( Ât, B̂t). Easy to bound Q.

I Excitation directions of Σ t determine the accuracy of Q and K .
However, only controllable state directions matter.

Excitation and Dual Control

1985 Bai/Sastry Persistency of excitation, sufficient richness and parameter
convergence in discrete time adaptive control

1986 Green/Moore, Persistence of excitation in linear systems

1988 Mareels/Gevers Persistency of excitation criteria for linear, multivariable,
time-varying systems

2005 Willems et.al, A note on persistency of excitation
(With the “fundamental lemma” recently used for data-driven control)

1986 Åström/Helmersson, Dual control of an integrator with unknown gain

1995 Wittenmark, Adaptive dual control methods: An overview

2018 Mesbah, Stochastic model predictive control with active uncertainty learning:
A Survey on dual control

2021 Flayac/Nair/Shames, Nonlinear dual control based on fast moving horizon
estimation and model predictive control with an observability constraint
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Problem Formulation

Define Mβ as the set of all pairs (A, B) such that there exists Q with
I 5 Q 5 β 2 I and

Q− I =
[
A B

]smin
K

([
I
K

]s
Q
[
I
K

]) [
A B

]
.

Find a controller µ : (x0, . . . , xt) ]→ ut, that stabilizes the system

xt+1 = Axt + But + wt t ≥ 0

for all (A, B) ∈ Mβ subject to a bound on disturbances wt.

Optimal state feedback behavior is expected as limt→∞wt = 0.
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The Linear Quadratic Dual Controller

Σ t+1 = λ
[
Σxx
t Σxu

t
Σux
t Σuu

t

]
︸ ︷︷ ︸

Σ t

+

[
xt
ut

] [
xt
ut

]s
Σ0 = 0

Σ̂ t+1 = λΣ̂ t + xt+1
[
xst ust

]
Σ̂0 = 0

K t = K(Σ t, Σ̂ t)

ut = K txt︸︷︷︸
Exploitation

+εpxtpE
(
Σ t, K txt − Σux

t (Σxx
t )

†xt
)

︸ ︷︷ ︸
Exploration

The states Σ t, Σ̂ t, collect correlation data with forgetting factor λ ∈ [0, 1].

Controller map K gives K t. E provides direction for excitation/exploration.

The Controller and Excitation Maps

Let Qt 4 I be a solution to the “data driven Riccati equation”

Σ̂st min
K

([
I
K

]s
Qt

[
I
K

])
Σ̂ t = Σ t (Qt − I) Σ t

and let K(Σ t, Σ̄ t) be a minimizing value of K .

Let Σuu
t − Σux

t (Σxx
t )

−1Σxu
t have eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0

with corresponding eigenvectors e1, . . . , em. For v ∈ Rm with
v = v1e1 + · · ·+ vmem, define the excitation map

E(Σ, v) := sign(vm)em

Output Feedback

The input-output model

yt + a1yt−1 + · · ·+ anyt−n = b1ut−1 + · · ·+ bnut−n + vt

can be written with xt =
[
yt . . . yt−n+1 ut−1 . . . ut−n+1

]s as

xt+1 =




−a1 . . . −an−1 −an b2 . . . bn−1 bn
1 0 0 0

. . .
...

. . .
...

1 0
0 . . . 0 0 0 . . . 0 0
0 . . . 0 0 1 0 0

. . .
...

. . .
...

0 0 1 0




︸ ︷︷ ︸
A

xt +




b1
0
...
0
1
0
...
0




︸ ︷︷ ︸
B

ut +




vt
0
...

...

...
0




︸ ︷︷ ︸
wt

In practice: Other filters of past states and inputs give better conditioning!

Example 1: A Double Integrator

Simulate an input-output model with transfer function (z− 1)−2:

yt+1 = 2yt − yt−1 + ut−1 + white noise

with unit initial value and step reference change at t = 50:

After inital adaptation, the adaptive controller follows the optimal perfectly.

Example 2: Add a Zero at z = 2

Simulate an input-output model with transfer function (1− z/2)(z− 1)−2.

yt+1 = 2yt − yt−1 − 0.5ut−1ut + ut−1 + white noise

Transients are bigger. That’s all:

But can anything be proved rigorously?
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Main Result

(Robustness degree) ≥ (Excitation level) $ (Degree of stabilizability)

Robustness degree

Dual Controller

x+ = Ax+ Bu+ w

-

-

� �
�
�

x w

ux

Unmodelled
dynamics

Consider xt+1 = Axt + But + wt with the following bounds:

Σww
t 5 γ−2Σxx

t , 0 5
[
(Σxx

t )
2 Σxw

t
Σwx
t γ−2 I

]
.

“Robustness degree” is the maximal γ−1 for which stability is guaranteed.
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Excitation level

The system is said to have excitation level δ ∈ (0, 1) if[
Σxx
t Σxu

t
Σux
t Σuu

t

]
4 δ

[
Σxx
t 0
0 qΣ tqI

]
.

for all t ≥ t0, where t0 ≥ n+m.

Remark:
This is a quantative notion of excitation, rather than then traditional
qualitative one.

Main Theorem

Suppose that (A, B) ∈ Mβ with Q and K being the corresponding
solutions to the Riccati equation. If the excitation level is δ , then the linear
quadratic dual controller connected to x+ = Ax+ Bu+ w gives
exponential stability provided that

γ−1 ≤ (Excitation level)︸ ︷︷ ︸
δ

$(Degree of stabilizability)︸ ︷︷ ︸
[2
√

2β(β 2+1)2]
−1

Moreover, for t ≥ t0, the closed loop system satisfies
[
xt+1 − wt+1
K t+1xt+1

]s
Q
[
xt+1 − wt+1
K t+1xt+1

]
≤ α

(
pxtp2 + pK txtp2p

)
+

[
xt
K txt

]s
Q
[
xt
K txt

]
.

where α := 1− 2
√

2β(β 2 + 1)2γ−1δ−1.

Proof ideas

I Use w-bounds and degree of excitation to verify that Qt is close to Q
(in controllable state directions).

I This gives that K t is close to the optimal K .

I Uncontrollable state directions are fine by degree of stabilizability.

I Stability and dissipativity follows from corresponding properties of the
optimal controller for known A and B.
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I More examples and conclusions

Example 3: A System Hard to Control

Even systems which require unstable controllers seem to work fine:

P(z) = (z− 1)(z− 1.1)
z2(z− 1.05)(z− 1.15)

But other examples call for other solutions...

Example 4: Control based on absolute value

θ

Objective: Direct antenna towards target.

Measurement: Signal strength gives absolute value of θ .

Dual control:
Move antenna to learn sign of θ at the expense of short term performance.

[Olle Kjellqvist arxiv.org/abs/2312.05156]

Conclusions

I Adaptive and dual control should be revisited.
Parameterization using Q-matrix avoids many past difficulties.
Åström/Wittenmark’s missing theory is within sight!

I Natural step from data driven Riccati equation to MPC.

I Conservative bounds should be improved.
Use statistical methods to further reduce conservatism.

See personal web page and [arxiv.org/abs/2312.06014]
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