SSSSSSSS

Cloud Computing
#2a - Virtualisation and Networking

Virtualization

From Wikipedia, the free encyclopedia

In computing, virtualization refers to the act of creating a virtual (rather than actual) version of something,

including virtual computer hardware platforms, storage devices, and computer network resources.

Virtualization began in the 1960s, as a method of logically dividing the system resources provided by

mainframe computers between different applications. Since then, the meaning of the term has broadened.!!]

Physical machine

/

Virtual machine #1 Virtual machine #2

Virtual machine #3

Physical machine

Virtual machine #1

Virtual machine #2

Virtual machine #3

\\

Physical machine

AlA[A]A AlAJALA

Pl P|P]|P plP|P]|P
Pl P|P]|P pPlP|P]|P

A

p
p

A

p
p

A

p
p

A

p
p

Virtual machine #1 Virtual machine #2 Virtual machine #3

A

p
p

A

p
p

A

p
p

A

p
p

AlA]JA]A
plP|P]P
p|P|P]P

A

p
p

A

p
p

A

p
p

A

p
p

Operating System Operating System

Operating System

AlALTALA AlA[A]JA]JA]TALTA|A

p|P]|P]|P Pl P|P]|P plP|P]|P
pP|P]|P]|P Pl P|P]|P plP|P]|P

Operating System

Operating System

Operating System

Operating System Operating System Operating System

Virtualisation layer

Virtualisation layer

Operating system

Virtualisation layer

Hardware

Operating system

Hardware

Operating system

Hardware

Network virtualisation

Storage virtualisation

Cloud Motives

— Server Consolidation — Improved Availability
— Improve utilisation (possible to overcommit) — Checkpointing
— Significant cost savings (equipment, space, power) — Fault tolerance

— Simplified Management — Disaster recovery
— Datacenter provisioning and monitoring — Replication
— Dynamic load balancing — Security
— Migration (dead or alive) — Isolation

— Convenient for users

pe-—---—
CPU Usage CPU Usage History

\\

\\

Yesterday's News

— Classical VMM
— IBM S/360, IBM VM/370

— Co-designed proprietary hardware, OS,
VMM

— Applications

— Timeshare several single-user OS
instances on expensive hardware

System/370

/
{
/&

_ Compatibility 3 b i B =L
.l/l l _

From IBM VM/370 product announcement, ca. 1972

Original Motives ‘65

— Multiprogramming

— Multiple single application VMs

— Multiple secure environments

— Managed application environments
— Mixed OS environments

—Legacy applications

—New systems transitions
—Software development

—OS training

—Help desk support

—Operating system instrumentation
—Event monitoring

—Check pointing

\\

\\

Popek & Goldberg 74

Hypervisor

VMM

host

A virtual machine is taken to ke an efficient, iso-
_,. Hardware lated duplicate of the real maqhinc..WS:. expla n.-t.h@S?‘

notions through the idea of a:virtual machine monitor

three essential characteristics. First, the vMM provides
an environment for programs which is essentially iden-
— tical with the original machine; second, programs run
\ in this environment show at worst only minor decrcases
VM in speed; and last, the vMM is in complete control of
system resources.

guest

Formally, virtualization involves the construction of an
isomorphism that maps a virtual guest system to a real host

\\

state mapping

f(S;)

instruction
sequence

existence of map & instruction sequences such that:

fe(S) = e/ (f(§))

Popek & Goldberg ‘74

I/I//;::\\\\\ I/I/,:’_\\\\\
Vt |d k uest '\)) L)) |
irtual dis quest (N)))]
IS -7 I S -7
l§ /k Il\ /I,
. . . \
virtualization \ ~----" 1\] S~

The function f() / ‘ :

r v

host
write
operation

guest
write
operation

Virtualization differs from abstraction in host
that virtualization does not necessarily

hide details; the level of detail in a

virtual system is often the same as that

in the underlying real system.

\\

CPU virtualisation _onprivieged

Popek & Goldberg 74

Innocuous
Privileged

& 7

— Change the configuration of resources
— Load PSW, Set CPU Timer (S/370)

Behavior

" Control
sensitive

sensitive

- Three types of instructions

— Control sensitive

— Behavior sensitive
— Depend on the configuration of resources

— Load Real Address (S/370), Pop Stack into Flags Register (IA-32)

— Innocuous
— The rest (klabbet)

User User

CPU virtualisation

Popek & Goldberg 74

Does not satisfy condition Satisfies condition —
efficiently virtualizable

THEOREM 1. For any conventional third generation
computer, a virtual machine monitor may be constructed
if the set of sensitive instructions for that computer is a
subset of the set of privileged instructions.

CPU virtualisation

Popek & Goldberg 74

— AVMM must satisfy three properties

— Efficiency implies that all instructions that are innocuous must be
executed natively on the hardware, with no intervention or
emulation by the VMM.

— Resource control implies that it should not be possible for guest
software to directly change the configuration of any system
resources available to it, e.g., real memory. The allocator must be
invoked if the guest software makes any such attempt.

— Equivalence implies that any program executing on a virtual
machine must behave in a manner identical to the way it would
have behaved when running directly on the native hardware, with
only a few exceptions.

\\

Virtualization Approaches

Trap-and-emulate
Binary translation
Paravirtualization
Hardware-assisted Virtualization

IBM Mainframe VMs VMware x86 Hardware Virtual /O and
Workstation Support Power Device Assignments
'70s '99 03 '05 12

=

Virtual
Interrupts

A

Paravirtualization CPU and Memory
Xen Optimizations

\\

CPU virtualisation

Privileged instructions vs user instructions

Physical machine

4 I
Most privileged
(System mode)
App App App App
ring 1
Libraries
ring @
kernel
Operating System (kernel) I
drivers
Hardware drivers
Least privileged
(N J (User mode)

\\

Virtual State

VMM Memory Copy register state from
Processor VMM memory
Register values Load program counter to
for VM 1 point to VM program and
VMM copies register start execution
values when VM is ¢
activated *
Processor 4 '\> Register values ¢
Registers N M for VM 2 mov reg A -> reg B
.
.
.
Register values Copy register state from
for VM 3 processor back to system
memory
VMM determines VMM restores
next VM to be architected state
activated for next VM
Timer VMM saves VMM sets timer VMM sets PC to timer
interrupt architected state interval and interrupt handier of
occurs of running VM enables interrupts OS in next VM

v l

l

First VM Active VMM Active

VM Active

\\

CPU virtualisation

Privileged instructions vs user instructions

Virtual machine#1 (guest)

Virtual machine#2 (guest)

\\

De-privileging - Run guest OS

in unprivileged mode

N
App App App App App App App App
Libraries Libraries
Operating System (kernel) Operating System (kernel)
VRN
App App
VM#1 VM#2
Hypervisor/VMM

Operating System (kernel)

Hardware

Physical machine (host)

drivers

drivers

Most privileged
(System mode)

Least privileged
(User mode)

\\

CPU virtualisation

Virtual machine#1 (guest) Virtual machine#2 (guest)
— The guest is typically just another user-level (N (
process (G pp“Cthon) App App App App App App App App
— Facilitates processor sharing using standard Operoting system (erel) Operating System (ernel)
operating system scheduling
x, J \§

— This allows for cloud providers to do
overcommit, i.e. sell more compute power than

App App
VM#1 VM#2

Hypervisor/VMM

is actually available.

Libraries

— Bet on that not everyone is running at the

Operating System (kernel)

same time.

Hardware

Physical machine (host)

CPU virtualisation

Trap and emulate

Privileged instructions trap, and VMM
emulates
— E.g., movl %eax, %cr3; invalidate the TLB

— Traps into VMM so the effect can be emulated

Execute guest instructions on real CPU
when possible

— E.g., add| %eax, %ex

continue

Virtual machine

code

|

privileged

\\

instruction trap

|

Hypervisor/VMM

Emulate changes

L]

\Librories/
AN 7
_/

Operating System (kernel)

Hardware

Physical machine

CPU virtualisation

Trap and emulate

— VMM has three parts
— Dispatcher
— Allocater
— Interpretor routines

These instructions
desire to change
machine resources,
e.g., load relocation
bounds register

Allocator

Instruction
trap occurs

|

Dispatcher

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

Privileged
Instruction

These instructions do not
change machine resources
but access privileged
resources, e.g., IN, OUT,
Write TLB

Interpreter
Routine 1

Interpreter
Routine 2

Interpreter
Routine n

\\

CPU virtualisation

Binary translation

— Interpret the binary code
— Replace privileged instructions
— Avoids traps, which can be expensive

— Most instructions remain identical, except control flow
(calls, jumps, branches, ret, etc.), and privileged
instructions

— Dynamic or static
— Use cache to speed up

— Popularised by VMWare on x86

Guest code

Translated code

mov ebx, eax

mov ebx, eax

cli

mov [VIF], O

and ebx, ~Oxfff

and ebx, ~Oxfff

mov ebx, cr3

mov [CO_ARG], ebx

sti

call HANDLE CR3

ret

mov [VIF], 1

test [INT_PEND], 1

...... J 3§ L= ERLTTEECEEE LR R

call HANDLE_INTS}

jmp HANDLE RET

\\

CPU virtualisation

Paravirtualisation

— OS or system devices are virtualization aware

— Requires recompilation of the OS
— Guest applications unaffected
— In general good performance

—Popularised by XEN for x86

f

App

App

Operating System (kernel)

Operating System (kernel)

Knows about

Y

VMM/Hypervisor

Hardware

Hardware

No virtualisation

Normal
virtualisation

f
App
Operating System (kernel)
\ T
I Knows about
|
4 A4
VMM/Hypervisor
Hardware
.

Para virtualisation

\\

Virtual
machine
(guest)

Physical
machine
(host)

Memory virtualisation

Virtual Memory 101

— Each process has its own space (usually
starting at 9x0)

— The page table keeps map of virtual memory to
physical memory

— TBL is the page mapping cache

— Virtual memory enables memory isolation
between user processes

-
(Process) (Process)
X0 —m8mm > 0x0 >
_\ _/

-

5% s
_

\\

Virtual memory

Physical memory

Disk

Memory virtualisation

When virtual memory is virtually virtualised

Virtual machine #1 Virtual machine #2
s A e \
Virtual memory
\’\\‘pagetobk& / \ po% table & \
Physical memory
\ — = J N i J
J L J L
s \
Virtual memory
\ \ pag?m\/ /
Physical memory
\ J

Physical machine

\\

Memory virtualisation

When virtual memory is virtually virtualised

Virtual machine #1 Virtual machine #2

S \ } &\

-

[N\

Physical machine

Virtual memory

Real memory

Physical memory

\\

Memory virtualisation

When virtual memory is virtually virtualised

1000

2000

Virtual Memory of

Real Memory of

Virtual Memory of
Program 3 on VM2

Virtual Memory of Real Memory of
Program 1 on VM1 VM1 Program 2 on VM1 VM2
500 :
N 1000 ! 1000
N\ | 1500 5 ‘ Not mapped :
00— 3000 [~
. .‘ \ /l E s
™y | 4000 A | 4000
5000 11" , ;
\ "\ Notmapped ¥ '
v to physical
B \ memory]
- Physical Memory ,"
Virtual Page | Real Page of System
| /| Virtual Page | Real Page
1000 5000 500 (> /
- 1000 [= 1000 500
2000 1500
3000 --- 4000 3000
Page Table for Program 1
Page Table for Program 3
Virtual Page | Real Page
VM1 Real . VM2 Real :
1000 Not mapped Page Physical Page Page Physical Page
4000 3000 1500 500 500 3000
3000 Not mapped 3000 Not mapped
Page Table for Program 2
5000 1000 Real Map Table for VM2
Real Map Table for VM1

\\

Memory virtualisation

When virtual memory is virtually virtualised

Virtual machine #1

Virtual machine #2

\ page totﬁe

(
\

|
\

L
Vo

\ po%toble/ﬁ \
shadow page table

iy

Physical machine

Virtual memory

Real memory

Physical memory

\\

Virtual Memory of

Program 1 on VM1 is
currently active

Page Table Pointer / |

Shadow Page Tables

Shadow Page

Maintained by VMM -
>
Virtual Page | Physical Page
1000 1000
2000 500
Table for

Program 1 on VM1

Virtual Memory of Real Memory of Virtual Memory of Real Memory of
Program 1 on VM1 VM1 Program 2 on VM1 VM2 Program 3 on VM2
500 :
1000 N 1000 ' 1000
N\ | 1500 5 . Not mapped :
2000 ;
000 __';_,_\ 3000 [~
| 4000 {0 4000
5000 1 " , 5
\ "\ Not mapped ¥ !
v to physical '
b \ memory]
- AN Physical Memory ,"
Virtual Page | Real Page o of System
NN /| Virtual Page | Real Page
1000 5000 500 (= ! .
1000 (2= 1000 500
2000 1500
3000 oe 4000 3000
Page Table for Program 1
Page Table for Program 3
Virtual Page | Real Page
VM1 Real , VM2 Real .
1000 Not mapped Page Physical Page Page Physical Page
4000 3000 1500 500 500 3000
3000 Not mapped 3000 Not mapped
Page Table for Program 2 i ia
6000 1000 Real Map Table for VM2
Real Map Table for VM1

Physical Page

Virtual Page
1000 Not mapped
4000 Not mapped

Shadow Page Table for
Program 2 on VM1

Virtual Page | Physical Page
1000 3000
4000 Not mapped

Shadow Page Table for
Program 3 on VM2

Virtualization Interfaces

\\

Until now we have looked at system level
virtualisation, i.e. the whole machine is
virtualised.

But that is not the only option!

ISA = Instruction Set Architecture
3 = System ISA (Privileged calls)
4 = User ISA (User level calls)
ABI = Application Binary Interface

API = Application Programming Interface

Application
programs
Libraries
O
Operating system

Software

API

ABI
7 ISA

3

Execution hardware

/0 devices
and
networking

Main
memory

Hardware

\\

I/O Memory I/0 Memory
Data

Data

Control CPU

Data CPU
Control
(a) (b)
I/O Memory Memory
Data
DMA | pata /0 Control
Controller
Data
IOP CPU
CPU
Control /O

Different Types of Input/Output. (a) Programmed I/O; (b) interrupt-driven I/O; (c¢) DMA-

(c)

managed I/O; (d) IOP-based 1/0O.

(d)

\\

4) 4)
Process VMs System VMs App App
Operating System (kernel) Operating System (kernel)
g J g J
4)
Same Different | Different .
ISA ISA ISA VMM/Hypervisr
Multiprogrammed Dynamic 1 Classic system Whole-system VMM/Hypervisor Operating system
systems translators ! Ws « _ _ VMs
. — i mm— >
Same-ISA dynamic High-level-language Hosted Codesigned Hardware Hardware
binary optimizers VMs ' VMs VMs L) L)
N
S o Type 1 hypervisor , Type 2 hypervisor
RN bare metal ’ hosted
~ /7
=~ ~ ~ 7
S o P s
~ -~
d - -~ - - -

System VM vs Process VM

Until now we have looked at system level
virtualisation, i.e. the whole machine is

virtualised.

But that is not the only option!

Virtual
machine
(guest)

Physical
machine
(host)

App

App

Operating System (kernel)

Virtualising software

Virtualising software

Operating system

Hardware

Hardware

System
virtual
machine

Process
virtual
machine

\\

LXC - Linux Containers

Lightweight process level virtualization

No VM (or VMM/hypervisor), just a Linux process

A user space interface for the Linux kernel containment features:

— Kernel namespaces, Apparmor/SELinux, Seccomp, Chroots, Kernel capabilities, cgroups

Multiple containers share the same kernel

A long story...

— Chroot (1979) — change root directory for a running process, along with children = segregate
and isolate processes, protecting global environment

— Jails — additional process sandboxing features for isolating filesystems, users, networks (limiting
apps in their functionality)

— Solaris Zones — full application environments, with full user, process and filesystem space

— Cgroups(2006) — process containers designed for isolating and limiting the resource usage of a
process

\\

Enter Docker Containers

— A user-space process (LXC)
— Isolation based on Linux process mechanisms
— Each container has its own network stack and file
system
— Share kernel with host
— Containers can be stopped, paused, restarted

&> docker

Name borrowed from the shipping industry,
hence the aquatic theme.

Portability - can be used on any of supported
types of ships

Wide variety of cargo that can be packed
inside

Standard sizes - standard fittings on ships
Many containers on a ship

Isolates cargo from each other

\\

What does Docker offer?

* A simple way to pack code and dependencies together
* Apps that can run anywhere
* Low overhead App A

* A complete ecosystem for sharing images Bins/Libs

CONTAINER

App B App C

Bins/Libs Bins/Libs

Docker

Host OS

Infrastructure

\\

\\

Docker Containers

— Each container is built from a Docker image.
— Images are read-only
— Union mount merges the images together with a
writable top layer
— Copy-on-write

references

— Docker registries to store and publish images
— DockerHub, etc.
— Tons of applications ready for download

— Docker images are built in an hierarchical fashion, which
facilitates collaboration and innovation

— Fast to start and stop
— Runs equally well on your laptop and in the cloud

— Solves the dependency mess

Docker Files

A recipe for building images

Dockerfile

FROM ubuntu:14.04
MAINTAINER Linus Karlsson <linus.karlsson@eit.lth.se>

RUN apt-get update && apt-get install -y python-pip
RUN pip install Flask
ADD server.py /srv/server.py

EXPOSE 5000
CMD python /srv/server.py

Easy to create repeatable environments
Fits well into the automation workflow

\\

Using Docker

Docker vs VMs

— Virtual machines have their own complete guest OS.
— Separate kernels. Takes time to boot.

— A small application we want to run quickly adds
up to much data.

— Consumes host resources
— Thorough isolation

— Docker
— Shares kernel with host OS.
— Runs as a process inside the host.
— Only applications and its dependencies.
— Efficiency, better reuse of host OS resources
— Docker contains OS, but runs natively
— Less isolation

\\

Containers vs. VMs

VM

Host OS

Server

Container —

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

Host OS

Server

Performance

120000
100000
80000)
4 & Native
o 60000
- 40000 L “ Docker
20000 — KVM
0
Random Random Random
Read Write Mixed
e *

Storage

\\

80
- 70
g 60
g
o 50 “ Native
L 40
o “ Docker NAT
; 30
§ 20 KVM
€ 10

0
TCP_RR UDP_RR
L — ———
Networking

IBM Research, An Updated Performance Comparison of Virtual Machines and Linux Containers, 2014-07-21, http://
domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D230068 1E7B/ $File/rc25482 .pdf

Containers empowering microservices

Quicker start times simplified both prototyping and auto-scaling

Allow work to be done independently on modules and facilitates independent
releases for components

Isolated and abstracted runtime environments, that can be tailored for each module

Shared runtime environment, for heterogenous applications

\\

Unikernels

The goal of mirageoS is to
restructure entire Vms—
including

all kernel and user-space
code— into more modular
components that
areflexible,secure, and
reusable in

the style of a library
operatingsystem.

Configuration Files

Application Binary

Language Runtime

Mirage Compiler
application source code
configuration files
hardware architecture
whole-system optimization

Parallel Threads
User Processes Application Code
0S Kernel Mirage Runtime specialized
unikernel
Hypervisor Hypervisor
Hardware Hardware

\\

GPU virtualisation

Application

JL

BB oites

" Remark:
GPUs can only be used within
the node they are attached to

\\

GPU utilisation often becomes an issue

‘ e Used Memory

- GPU Utilization

======: Ayg. GPU Ultilization

1200 1

3 8
SRS
[

300

:

GPU Memory (MB)

GPU Memory (MB)
g3
oo o
\ '.

== - p— r=— 1T 100%(:
>
25% o
JNMERINE) 0% %
1200 ~ 1800 2400 3000 3600
Execution Time (seconds)
=
! | L \ 1
_____ L lw ... [LIY
l 1 ||| T ﬂ
1200

o

=3

>

o

g

[7}

s

|

Q

(U]

& 1200 =
2 900

é‘soor

g so | I
& 0 600
(U]

. 1800
Execution Time (seconds)

1800
Execution Time (seconds)

l

{0l

IELIE S8 41

pamme s wan) |

8y

1800
Execution Time (seconds)

2400

\\

GPU virtualisation

Hypervisor

Guest VM 1

u_ Applicationsi

an

s

| | 1]

1 [)

N : ' '

i : ;

NVIDIA GRID ' ; |
Physical GPU § Virtual GPU |3 Virtual GPU i Virtual GPU

1 :]

\\

GPU virtualisation

Hypervisor

Guest VM

UJApplications

. Paravirtualized |
7 Interface |
1r
Direct GPU
Access
{}
) Virtual GPU Dedicated Framebuffer
Scheduling
T
: J J J

\\

Remote GPU virtualisation

[|

o | e

\\

Software

Client side | Server side —
|
Application |
s |
i |
CUDA API |
|
. rCUDA
rCUDA client

: server CUDA libraries
|
|

Hardware

Access to remote GPU is
transparent to applications:
no source code
modification is needed

r€EUPA

rCUDA is a development by Universitat Politécnica de Valéncia remote CUDA

\\

FPGA virtualisation

G

CPU: temporal compute

FPGA: spatial compute

\\

FPGA virtualisation

System
management

v

Resource & Request

management

v

Bitstream
Library

Communication &
Configuration

Guest OS

Hypervisor

Driver

FPGA | |FPGA

Server Stack

Fahmy et al.,, "Virtualized FPGA Accelerators for Efficient Cloud Computing", IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom), 2015

\\

Storage virtualisation

Block storage (virtual hard disk)

Virtual machine

-~

\/

~
oo pp App App Works just like a regular disk.
Libraries o
Partition, format, mount
Operating System (ABI)
Flesystem Performance is an issue
Block device driver
J
~
Adp
VMF1
N~ -~ Hypervisor
Libraries
Operating System (ABI)
File system
Block device driver
v
Disk
J

Physical machine

\\

Storage virtualisation

Remote block storage (virtual hard disk)

Virtual machine

N _—7

\\

| Still works just like a regular disk
App App App App
Lbrris Performance is an issue. Latency and throughput bounded by network
Operating System (ABI)
File system
(—/Block device driver
_/
Physical machine (compute node) Physical machine (storage node)
) 4
v
L Hypervisor
)
Libraries 4 Libraries
Operating System (ABI) Operating System (ABI)
NIC Boot disk NjC Disk
J &
L Network J

SSSSSSSS

Cloud Native
#20 - Networking

Networking 101

The stack
HTTP, FTP
7 Application Layer
6 Presentation Layer
5 Session Layer TCP, UDP
4 Transport Layer
3 Network L
etwork Layer Ip
2 Data Link Layer
1 Physical Layer Ethernet,
— — tokenring

OSI MOdel 1000BaseT

True definition of a layer n protocol:
Anything designed by a committee whose
charter is to design a layer n protocol

R — ——

%

| Layer 4
Headers

@ http://www.foocorp.com/

Application,
Presentation, and
Session Layers

N\ J

Y

N

J

~

| Layer 3 | |
Headers

N

J

~

| Layer 2 | |
Headers

J

~

...11001001001001101010101011010101000010010011010100011010010101...

O —

e EE——

Source: Optimizing Network Performance with Content Switching: Server, Firewall, and By Matthew Syr

Network virtualisation

Virtual network (10.0.0.0/24)

Virtual machine#1

App

Libraries

Operating System (kernel)

10.0.0.12

L 00:1a:2c:2F:32:d1

Virtual machipe#3

App

App

Libraries

Operating System (kernel)

10.0.0.27

L 01:2c:1la:4b:12:c2

\

Network virtualisation

S-MAC: 00:1A:2C:2F:32:D1
D-MAC: 01:2C:1A:4B:12:C2
S-1P: 10.0.0.12
D-IP: 10.0.0.27
<PAYLOAD> Virtual network (10.0.0.0/24)
Virtual machine#1 Virtual machine#3
4) 4
App App App
Libraries Libraries
Operating System (kernel) Operating System (kernel)
10.0.0.12 10.0.0.27
L 00:1a:2c:2F:32:d1 y L 01:2c:1a:4b:12:c2

\

Guest

Network virtualisation

Turtles all the way down e
a\ b | v | wemimann [0
user data
Host
| I
| | application
| !
Appl.
h e.stF:I)e.r user data J
| |
[| TCP
))
TCP .
hesider application data
! !
:*«— TCP segment r: 1P
1P TCP . .
hesitler besrler application data
|
:'E 1P datagram 5*: Ethernet
| | driver
Ethernet 1P TCP heation d Fthernet
header header header AppACalon Kaka teailer Ethernet
14 20 20 4
| Ethernet frame |

| == 46 to 1500 bytes e |

\

Network virtualisation

Virtual machine#1

Virtual machine#2

e : N ™
App App
Libraries Libraries
Operating Systemy nel) Operating System (kernel)
10.0.0.12
00:1a:2c:2F:3241) L)
& e
/ N\
Aﬁ App
VM#1 VM#2
- e ~
100.93.56.216 BrEI
b6:00:59:58:f1:06
- e J
Physical machine (host)

Router

Network

S-MAC: b6:00:59:58:f1:06
D-MAC: a2:1b:99:b0:8b:ff
S-IP: 100.93.56.216
D-IP: 100.93.56.112

Virtual machihe#3

Virtual machine#4

App

App App

App

Libraries

Libraries

rnel)

Operating System (kernel)

16
0]

.0.0.27
:2¢c:1a:4b:12:c2

PP
#1

App
VM#2

Open vSwitch (OVS)

e | 100.93.56.112

a2:1b:99:b0:8b:ff

C

Physical machine (host)

S-MAC: 00:1a:2c:2f:32:d1
D-MAC: 01:2c:1A:4b:12:c2
S-IP: 10.0.0.12
D-IP: 10.0.0.27

<PAYLOAD>

Network

\

Tunneling

— Provides a network service that the underlying network cannot provide.
— IPv6overIPv4

— VPN - Virtual Private Network, provide secure access to a network using non-secure networks. Uses IPSec
“encrypt an IP datagram and put it in an IP datagram”

— Usually violates the OSI model, i.e., the layer m payload contains layer n<m protocol data.
— Communication between data centers typically over tunnels.

— VXLAN
— VLAN on steroids.
— Addresses scalability problem of layer-2 networks.
— Allows 2724 logical networks. Identified by VXLAN Network Identifier (VNI).
— Encapsulates layer-2 frame in UDP datagram. Layer 2 on top of layer 3!
— Connect separate layer-2 domains to create one domain.
— Machines are identified uniquely by the combination of their MAC address and VNI.
— VXLAN Tunnel End Points (VTEP) encapsulate/decapsulate layer-2 frames.

\

Cloud Networking

Core

(Internet ’

Firewall

Aggregate switches
— Dynamics
— mobility, migration of VMs
— short lived services ToR switches (s
. QOO0
—on demand scaling JOD000aD
: QOO0
— Scaling 00000000
QOO0
—many VMs on many hosts LD
— Isolation JOD000an

— tenants sharing the same physical resource
— Traffic
— North-south/East-west
— Not always on physical links
— Make DNS a bit more complicated (and important)

—
00000000
00000000
00000000
00000000
00000000
00000000

gooooooo
00000000

\

The Two Networking “Planes”

Data plane: processing and delivery of packets with local forwarding

state
Forwarding state + packet header -> forwarding decision

Control plane: compute the forwarding state in switches/routers
Determines how and where packets are forwarded

\

NBiibdhol Swvttifte el dbiPRosders

routing, access control, etc.

Global Network View 5@3

Network OS (e.g. NOX)

Distrf ors

|
|
|
|
|

Forwarding Mo{j
:
|

60

\\

SDN

Software Defined Networking

Switch Control Plane

— Introduces a centralized control OpenFlow Controller
plance i e
— Networks are hard to manage OPEOFIOWccereingonmsi S

(=>expensive) Protocol

— Computation and storage have A Y

been virtualized RN S\itch
— Networks are hard to evolve ' ; .'
— Simplify the hardware nodes

Switch

Assignment #2

Bonus assignment on SDN for the brave...

Docker

\

VM

N

012
e T O D

476109

ocker

o

_

VM

(

[y
® [T (|

0BTl

ocker

VM

Docker

VM Y,

_

Volume

\

fin

\

