
Slide subtitle

Cloud Native
#4 - Cloud Application Design

— Challenges in designing and deploying scalable, efficient and safe cloud applications in an agile fashion

This Session

Case Study: Google Search

— A web search touches 50+ separate services, 1000s machines
— Searching is highly parallelizable
— Map-Reduce
— Massive amounts of data

— Data gathering ongoing background
process

— Latency is important for user-facing
services

— Data and responses are
heavily cached

Massive amounts of data
— Large data sets

— ~50 billion web pages index by Google

— Average size of webpage = 20kB

— 50 billion * 20KB = 1 PB (1^15 B)

— Network

— NW bandwidth = 1 Gbps => Moving 10TB takes ~1 day

— Solution: Push computation to the data

—Round trip between Europe & US ~200 ms

Data gathering

Performance = High throughput

Latency

— Quality = low latency

— Server response
— Typical: 10 ms
— One out of x: 1000 ms

— Latency sources
— Resource sharing
— SSD GC & compactations

— Mitigate by running several request
copies in parallel and use earliest
response

The Cluster Scheduler

Getting there

— DNS load balancing

— TTL < 5 minutes

— 500+ IP addresses for ‘Search’

lanhost496:~ johan$ dig +noall +answer google.com
google.com. 1 IN A 173.194.78.102
google.com. 1 IN A 173.194.78.100
google.com. 1 IN A 173.194.78.138
google.com. 1 IN A 173.194.78.101
google.com. 1 IN A 173.194.78.113
google.com. 1 IN A 173.194.78.139
lanhost496:~ johan$
lanhost496:~ johan$ dig +noall +answer google.com
google.com. 300 IN A 173.194.65.113
google.com. 300 IN A 173.194.65.101
google.com. 300 IN A 173.194.65.102
google.com. 300 IN A 173.194.65.138
google.com. 300 IN A 173.194.65.100
google.com. 300 IN A 173.194.65.139
lanhost496:~ johan$ dig +noall +answer google.com
google.com. 299 IN A 173.194.65.139
google.com. 299 IN A 173.194.65.100
google.com. 299 IN A 173.194.65.138
google.com. 299 IN A 173.194.65.102
google.com. 299 IN A 173.194.65.101
google.com. 299 IN A 173.194.65.113

The Data Centers

http://www.koomey.com/post/8323374335

Google Global Cache (GGC) — Edge Nodes

Once you are inside
The life of a request

First generation cloud applications

— Typically a monolithic application
— Database, mail server, web site, etc.

— Replicated a physical compute environment in the cloud

— Still gives many advantages over physical hosting
— Host upgrade with zero-downtime using VM migration
— Fail-over support on host failure
— Better monitoring possibilities
— "Somebody else's problem"

Second generation cloud applications

— Cloud native
— Designed to run in a cloud environment
— Benefit from a software-defined infrastructure
— Fault-tolerant and distributed
— Horizontal scaling of virtual resources

— "Infinite scalability"
— Configuration and orchestration

Micro-services

— Applications made up of independent building blocks
— Not a monolith

— Services designed, deployed, and operated independently

Jeff Bezos Mandate

“All teams will henceforth expose their data and functionality through service interfaces.

Teams must communicate with each other through these interfaces.

There will be no other form of interprocess communication allowed: no direct linking, no direct reads of another team's data store, no
shared-memory model, no back-doors whatsoever. The only communication allowed is via service interface calls over the network.

It doesn't matter what technology they use. HTTP, Corba, Pubsub, custom protocols -- doesn't matter. Bezos doesn't care.

All service interfaces, without exception, must be designed from the ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside world. No exceptions.

Anyone who doesn't do this will be fired.

Thank you; have a nice day! “

Microservices Basics

— Small, focused and doing one thing well

— Several connected microservices replaces one monolithic
service

— All communication via network calls
— Expose service via API
— Minimize coupling between services
— Minimize coupling between users and services

— All services have a clear business goal

Micro-service benefits

— Technological heterogeneity (use right tool for the job)

— Distributed systems more resilient to failure of single nodes

— Monitor and scale each component independently

— Composability

— Aligns well with focused teams organizationally

— Bug isolation and fixing easier, only affects single micro-service

Micro-service drawbacks

— Distributed systems difficult to reason about and debug
— Network calls between micro-services slower than local in-process calls

— APIs must be versioned and never broken

— Harder to make sweeping refactoring changes across them all
— (This is considered bad practice, but let's be realistic...)

Microservices as UI components

Each service has a business goal

Microservices are clean and simple.

At least in theory

Slide: Adrian Cockroft

In reality, not so much...

— Loose coupling
— Easy to replace a service
— Often means to we need to limit the ways a service may be used

— High cohesion
— Related behaviour sit together, avoid updating several services to fix one issue
— Identify boundaries for problem domains

What makes a good microservice?

— Heroku is a PaaS and "app" is
similar to a microservice

— Twelve rules for good design
— https://12factor.net

Rules are for the obedience of
fools and guidance of wise men.

Douglas Bader

I. Codebase

— One repo, one code base
— One code base, many deployments.

II. Dependencies

— Never rely on implicit existence of system-wide packages or tools
— Declare all dependencies using a dependency manifest
— Utilize tools for dependency isolation
— Python: pip and virtualenv

— This simplifies deployment and reduces faults

III. Config

— Config is everything that may vary between different deployments (staging, production, development, etc.)
— Location and access to storage and databases and other backing services
— Credentials
— Deployment names

— Store config in the environment, not in the code
— Environment variables populated by your deployment tools

— A litmus test is if can release the code base as open source without sharing sensitive information

IV. Backing Services

— A backing service is any service that is used as part of the normal operation
— Datastores (MySQL, MongoDB), messaging systems (RabbitMQ), SMTP (Postfix), Caches (Memcached)

— Treat all services in the same fashion. Make no distinction between local and global services
— Allow for services to be switched out (and this should be done in the config)

V. Build, release, run

— Strictly separate build and run stages

— Builds are initiated whenever code is
added or modified

— Every release have a unique ID

— The release version can be
automatically deployed for testing and
or production

VI. Processes

— Implement the service as one or more stateless processes

— Processes are stateless and share nothing. Any data that needs to be persistent must be stored on a
stateful backing service, e.g. a database

— The memory of a process may be used for example for caching, but must not be critical for correct
operation

— Assume that process can be terminated at any point in time

VII. Port binding

— Expose your service by binding to a port. That is how your service integrates.

— Locally the service may be available as http://localhost:5001/

— In deployment, a routing layer handles requests from users of the service

User

nginx

MySQL

80

33066603

8080

http://localhost:5001/

VIII. Concurrency

— A VM is limited in how large it can become
(vertical scaling). Instead make processes the
unit of scalability.

— If the processes are stateless, scaling becomes
almost trivial.

IX. Disposability

— Services are disposable, i.e. the can be started or stopped at a moment's notice. This facilitates fast
elastic scaling, rapid deployment of code or config changes.

— Important to minimize startup time in order to provide more agility.

— Support graceful shutdown when a SIGTERM is received.

— Be robust against sudden death.

X. Dev/Prod Parity

— Keep development, staging, and production as similar as possible. Historically, there have been a
substantial gap between development and production:
— The time gap: development is a long term activity
— Personnel gap: Developers write code, ops engineers deploy it
— The tools gap: the stack for development and deployment typically differs

— Make the time gap small:
— A developer may write code and have it deployed hours or even just minutes later.
— Make the personnel gap small: developers who wrote code are closely involved in deploying it and

watching its behavior in production.
— Make the tools gap small: keep development and production as similar as possible.

XI. Logs

— Treat logs a event streams, not only writing to file locally.

— Logs are the stream of aggregated, time-ordered events collected from output streams of all running
processes and backing services.

— In a deployed system each process' stream will be captured by the execution environment, collected
together will all other streams from the app, and then analyzed (maybe triggering alarms) and finally
archived.

XII. Admin Processes

— Run admin/management tasks as one-off processes
— Patching, database migration, fixing errors, terminal (REPL), etc.

— Use the same execution framework and environment as the services themselves
— Identical environment as the regular long running jobs
— The admin code should be shipped with the rest of the code to avoid synchronization issues.

Fallacies of Distributed Computing

Peter Deutch (and James Gosling) around 1995 or so:

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

Integration
Example use case

How to best design loosely coupled components?

Integration
The naive approach: shared storage

Why is this a bad design?

Integration
The naive approach: shared storage

— Exposes internal details of the database, which ties
consumers to a specific technology
— Goodbye loose coupling!

— Logic around database organisation is spread into
several places
— Goodbye cohesion!

Integration
The synchronous approach: Request/response

Why are the pros & cons?

Integration
The synchronous approach: Request/response with RPC

— Remote calls are really different from local calls...

— Performance
— Cost of marshalling/unmarshalling
— Must be careful in API design to avoid overhead

— Failures are hard to detect or understand. Difficult to distinguish between faults.
— Network failing (or worse, just slow)
— Servers failing
— Service failing
— Call is incorrect

— Brittleness
— Changes to server requires changes to clients
— This leads to lock-step releases (not trivial)

Integration
The asynchronous approach: Event based

Why are the pros & cons?

Integration
The asynchronous approach: Event based

— Message brokers, e.g. RabbitMQ, Kafka, etc.
— Message formats like JSON, Thrift, Protocol Buffers , etc.

— Will guarantee on delivery, ordering, resilience, at most once delivery, etc.

Integration
Asynchronous adds complexity

— The message broker is a non-trivial piece of software. Needs to be operated and maintained, and
of course contains bugs.

— RPC/REST can also be implemented as asynchronous (does not make it any easier)

— Long running asynchronous requests and response becomes complicates in large systems where
the client might not be around anymore due to failure or scaling.

— May require clients to check in every once in a while, check if status has updated

Secure your service

— Authentication and Authorization
— Single-sign on gateway
— JSON Web Tokens -- JWT

Secure your service

Figure from John Wilkes, Google

• Disk failures:

• Assume: 1 server has 6 disks,

• Disk MTBF ≈ 4.5 years

• 1000 servers in cluster => ~3.5 failures/day

“This means that 50% of hard drives
will survive until their sixth birthday.”

Failures - Live with it

“The discipline of experimenting on a distributed systems in order to build confidence
in the system’s capability to withstand turbulent conditions in production.”

Create Havoc yourself
PRINCIPLES OF CHAOS ENGINEERING

Open source tool from Netflix

CI/CD -
Continuous Integration/Continuous Deployment

https://gitlab.datahub.erdc.ericsson.net/root/demo

https://gitlab.datahub.erdc.ericsson.net

Scaling up or Scaling out?

— Scale up/down (or vertical scaling)

— Add more memory and CPUs to a single server

— Add more threads

— Ideal for legacy stateful components such as databases

— "Quickly" runs into an upper bound

— Scale out/in (or horizontal scaling)

— Add more servers

— Requires load balancing

— Cloud-native approach

Cloud Native Application Design

— Design for failure, assume everything fails, and design backwards

— Make sure to avoid single points of failure

— Goal: Applications should continue to function even if the
underlying physical hardware fails, is removed, or replaced

— Couple loosely to make applications scale

— Independent components

— Design everything as a black box

— De-couple interactions

— Load-balance applications and clusters

fin

Back-up slides

Course project

Cloudification of your favourite tool or application. It’s your choice, but make it scalable, multi-tenant,
and resilient to faults.

Start by paper design. Provide and architecture as well as interaction patterns (sequence diagrams, etc.).
Discuss how to handle faults and when and how to scale.

Once we have discussed the design individually per group, you should go ahead and implement it. But
that is not enough. You should also provide a workload generator as well as a chaos animal.

The final project will be presented Nov 1.

A typical cloud application architecture

Application
FrontendLoad

balancer

Frontend

(Reverse
Proxy)

Application
BackendLoad

balancer

Storage

Storage

Storage

Application
BackendApplication
BackendApplication
BackendApplication

Backend

Application
FrontendApplication
FrontendApplication
FrontendApplication
FrontendApplication

Frontend

stateless stateful

Scaling

Services Services

A mesh of services

Frontend

Microservice

Applic
ation

Backe
nd

Applic
ation

Backe
nd

Applic
ation

Backe
nd

Applic
ation

Backe
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Backe
nd

Applic
ation

Backe
nd

Applic
ation

Backe
nd

Applic
ation

Backe
ndApplic

ation
Fronte

nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Applic
ation

Fronte
nd

Microservice

Microservice

