SSSSSSSS

Cloud Native
#4 - Cloud Application Design

This Session

— Challenges in designing and deploying scalable, efficient and safe cloud applications in an agile fashion

OREILLY OREILLY" O'REILLY

Designirg
Distributed
Systems

PATTERNS AND PARADIGMS FOR SCALABLE, RELIABLE SERVICES

Reliability ‘g
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,

Brendan Burns Jennifer Petoff & Niall Richard Murphy

\\

Case Study: Google Search

— A web search touches 50+ separate services, 1000s machines
— Searching is highly parallelizable
— Map-Reduce
— Massive amounts of data l

Google Web server ~ |<«———Spell checker

— Data gathering ongoing background

process Ad server
— Latencyis important for user-facing

services X771 AN N NN

¥ 7 /1 AR 1
¥ i A 1
[\ |

— DGtC] F]nd responses are Index servers Document servers

heavily cached

\\

Massive amounts of data

— Large data sets
— ~50 billion web pages index by Google
— Average size of webpage = 20kB
— 50 billion * 20KB =1 PB (1715 B)

— Network
— NW bandwidth = 1 Gbps => Moving 10TB takes ~1 day
— Solution: Push computation to the data
— Round trip between Europe & US ~200 ms

\\

Data gathering

> Scheduler

World Wide
Web

Web pages

URLs

Multi-threaded

downloader

Performance = High throughput

Text and
metadata
\
4 Ny
Storage
J

\\

Latency

— Quality = low latency

— Server response
— Typical: 10 ms
— One out of x: 1000 ms

— Latency sources
— Resource sharing
— SSD GC & compactations

— Mitigate by running several request
copies in parallel and use earliest
response

Probability of one-second service-leve

e time as the system scales and frequency

of server-level high-latency outliers varies.

1

o O o o O
o o N o ©

o &

P (service latency > 1s)
O ©o o o o
N £

©
(o N

=== 1in100 == 1inl000 === 1in10,000

/ 0.18

/ /@

500 1,000 1,500 2,000
Numbers of Servers

\\

The Cluster Scheduler

Arriving jobs and ®
tasks (1,000s)

Cluster scheduler — @

g TIOTTTT
Cluster machines < 1N (N [[[6) O

rocoe | [(o] [I 1 I
NN NNNNN

\\

lanhost496:

2

johan$ dig +noall +answer google.com

google.com. 1 IN A 173.194.78.102

° google.com. 1 IN A 173.194.78.100

Gettlng there google.com. 1 IN A 173.194.78.138

google.com. 1 IN A 173.194.78.101

google.com. 1 IN A 173.194.78.113

google.com. 1 IN A 173.194.78.139

lanhost496:~ johan$

lanhost496:~ johan$ dig +noall +answer google.com

google.com. 300 IN A 173.194.65.113

— DNS load balancing google.com. 300 IN A 173.194.65.101

google.com. 300 IN A 173.194.65.102

google.com. 300 IN A 173.194.65.138

. google.com. 300 IN A 173.194.65.100

— TTL <5 minutes google. com. 300 IN A 173.194.65.139
lanhost496:~ johan$ dig +noall +answer google.com

, , google.com. 299 IN A 173.194.65.139

— 500+ IP addresses for ‘Search google.com. 299 IN A 173.194.65.100

google.com. 299 IN A 173.194.65.138

google.com. 299 IN A 173.194.65.102

google.com. 299 IN A 173.194.65.101

google.com. 299 IN A 173.194.65.113

Mount Hood

Cluster | Cluster

\
i
\

-
|
|
|
|
|
! v
| ©
B
| =
)] O
) 8
) E
|
]

\\

The Data Centers

Netherlands @ .
London % Finland
Oregon 9 Belgium Frankfurt

o Montréal
lowa @ Tokyo
Los Angeles N Virginia 0

S Carolina saka

9 Taiwan
Mumbai Hong Kong

Singapore

Sao Paulo

Sydne
B Current Regions & Number of Zones* ik

[0 Future Regions & Number of Zones*

\\

http://www.koomey.com/post/8323374335

oogle Global Cache (GGC) — Edge Nodes

Greenland

® SRR

3 H
Australia

\\

Once you are inside

The life of a request

(Reverse Proxy)

Load
Balancer

GSLB

Application

Frontend

— ——
Application
Backend

\\

First generation cloud applications

— Typically a monolithic application
— Database, mail server, web site, etc.

— Replicated a physical compute environment in the cloud

— Still gives many advantages over physical hosting
— Host upgrade with zero-downtime using VM migration
— Fail-over support on host failure
— Better monitoring possibilities
— "Somebody else's problem"

\\

Second generation cloud applications

— Cloud native
— Designed to runin a cloud environment
— Benefit from a software-defined infrastructure
— Fault-tolerant and distributed
— Horizontal scaling of virtual resources
— "Infinite scalability"
— Configuration and orchestration

\\

Micro-services

— Applications made up of independent building blocks
— Not a monolith

— Services designed, deployed, and operated independently

Monolithic Microservice A Microservice B Microservice D
Application Function B Function A I APY $ Function B |I API | FunctionD
Function C Function C
Microservice C

\\

Jeff Bezos Mandate

“All teams wnll henceforth expose thewr data and functionality through service interfaces.

L eams must communicate with each other through these interfaces.

"L here wnll be no other form of iterprocess communication allowed: no direct linking, no direct reads of another team's data store, no
shared-memory model, no back-doors whatsoever. The only communication allowed 1s via service interface calls over the network.

1t doesn't matter what technology they use. H'1'I P, Corba, Pubsub, custom protocols -- doesn't matter. Bezos doesn't care.

All service interfaces, without exception, must be designed from the ground up to be externalizable. That 1s to say, the team must plan and
design to be able to expose the interface to developers in the outside world. No exceptions.

Anyone who doesn't do this will be fured.

/(C

[hank you; have a nice day

\\

Microservices Basics

— Small, focused and doing one thing well Modeled around Culture of
business concepts automation

— Several connected microservices replaces one monolithic
service

Highly Microservices
— All communication via network calls observable Small autonomous
— Expose service via API services

— Minimize coupling between services /
— Minimize coupling between users and services

Isolate
— All services have a clear business goal failure Deploy
independently

Hide internal
implementation
details

Decentralize all
the things

\\

Micro-service benefits

— Technological heterogeneity (use right tool for the job)

— Distributed systems more resilient to failure of single nodes
— Monitor and scale each component independently

— Composability

— Aligns well with focused teams organizationally

— Bug isolation and fixing easier, only affects single micro-service

\\

Micro-service drawbacks

— Distributed systems difficult to reason about and debug
— Network calls between micro-services slower than local in-process calls

— APIs must be versioned and never broken

— Harder to make sweeping refactoring changes across them all
— (This is considered bad practice, but let's be realistic...)

\\

Microservices as Ul components

Customer |
service |
1
1

(atalog l

Ul components served
from services

Recommendation
Each service has a business goal service

\\

Microservices are clean and simple.

At least in theory

\\

In reality, not so much...

500+ microservices 500+ microservices

450+ microservices

&\

NETFLIX

Slide: Adrian Cockroft

What makes a good microservice?

— Loose coupling
— Easy to replace a service
— Often means to we need to limit the ways a service may be used

— High cohesion
— Related behaviour sit together, avoid updating several services to fix one issue
— Identify boundaries for problem domains

\\

3

HEROKU

— Heroku is a PaaS and "app" is
similar to a microservice

— Twelve rules for good design
— https://12factor.net

Rules are for the obedience of
fools and guidance of wise men.

Douglas Bader

THE TWELVE FACTORS

I. Codebase

One codebase tracked in revision control, many deploys

II. Dependencies
Explicitly declare and isolate dependencies

II1. Config

Store config in the environment

IV. Backing services
Treat backing services as attached resources

V. Build, release, run
Strictly separate build and run stages

VI. Processes
Execute the app as one or more stateless processes

VIL Port binding

Export services via port binding

VIII. Concurrency

Scale out via the process model

IX. Disposability

Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity

Keep development, staging, and production as similar as possible

XI. Logs

Treat logs as event streams

XII. Admin processes
Run admin/management tasks as one-off processes

\\

I. Codebase

— Onerepo, one code base
— One code base, many deployments.

Codebase

Deploys

production

| staging |

developer 1

I developer 2

\\

I1. Dependencies

— Never rely on implicit existence of system-wide packages or tools
— Declare all dependencies using a dependency manifest

— Utilize tools for dependency isolation

— Python: pipand virtualenv

— This simplifies deployment and reduces faults

\\

I11. Config

— Config is everything that may vary between different deployments (staging, production, development, etc.)
— Location and access to storage and databases and other backing services
— Credentials
— Deployment names
— Store config in the environment, not in the code
— Environment variables populated by your deployment tools

— Alitmus test is if can release the code base as open source without sharing sensitive information

\\

IV. Backing Services

— A backing service is any service that is used as part of the normal operation
— Datastores (MySQL, MongoDB), messaging systems (RabbitMQ), SMTP (Postfix), Caches (Memcached)

— Treat all services in the same fashion. Make no distinction between local and global services
— Allow for services to be switched out (and this should be done in the config)

\\

V. Build, release, run

— Strictly separate build and run stages

— Builds are initiated whenever code is
added or modified

— Every release have a unique ID

— The release version can be
automatically deployed for testing and
or production

lJ

Code

\I

Config
{}

N/

Release

\\

VI. Processes

— Implement the service as one or more stateless processes

— Processes are stateless and share nothing. Any data that needs to be persistent must be stored on a
stateful backing service, e.g. a database

— The memory of a process may be used for example for caching, but must not be critical for correct
operation

— Assume that process can be terminated at any point in time

\\

VII. Port binding

— Expose your service by binding to a port. That is how your service integrates.

— Locally the service may be available as http://localhost:5001/

— In deployment, a routing layer handles requests from users of the service

nginx

MySQL

= "
-

\\

http://localhost:5001/

VIII. Concurrency

— AVMi s limited in how large it can become
(vertical scaling). Instead make processes the
unit of scalability.

— If the processes are stateless, scaling becomes
almost trivial.

Scale
(running processes)

Workload diversity
(process types)

\\

IX. Disposability

— Services are disposable, i.e. the can be started or stopped at a moment's notice. This facilitates fast
elastic scaling, rapid deployment of code or config changes.

— Important to minimize startup time in order to provide more agility.
— Support graceful shutdown when a SIGTERM is received.

— Be robust against sudden death.

\\

X. Dev/Prod Parity

— Keep development, staging, and production as similar as possible. Historically, there have been a
substantial gap between development and production:

— The time gap: development is a long term activity
— Personnel gap: Developers write code, ops engineers deploy it
— The tools gap: the stack for development and deployment typically differs

— Make the time gap small:
— A developer may write code and have it deployed hours or even just minutes later.

— Make the personnel gap small: developers who wrote code are closely involved in deploying it and
watching its behavior in production.

— Make the tools gap small: keep development and production as similar as possible.

\\

XI. Logs

— Treat logs a event streams, not only writing to file locally.

— Logs are the stream of aggregated, time-ordered events collected from output streams of all running
processes and backing services.

— In a deployed system each process' stream will be captured by the execution environment, collected
together will all other streams from the app, and then analyzed (maybe triggering alarms) and finally
archived.

\\

XII. Admin Processes

— Run admin/management tasks as one-off processes
— Patching, database migration, fixing errors, terminal (REPL), etc.

— Use the same execution framework and environment as the services themselves
— Identical environment as the regular long running jobs
— The admin code should be shipped with the rest of the code to avoid synchronization issues.

\\

Fallacies of Distributed Computing

Peter Deutch (and James Gosling) around 1995 or so:

N LA WNE

The network is reliable.
Latency is zero.
Bandwidth is infinite.

The network is secure.
Topology doesn't change.
There is one administrator.
Transport cost is zero.

The network is homogeneous.

\\

Integration

Example use case Customer
enrollment

(Create customer
record

\ 4 A 4
(reate loyalty Dispatch welcome Send welcome
record pack in post email

v

| Completed |

How to best design loosely coupled components?

\\

Integration

The naive approach: shared storage

Customer
DB

Why is this a bad design?

Warehouse

\\

Integration

The naive approach: shared storage

— Exposes internal details of the database, which ties
consumers to a specific technology

— Goodbye loose coupling!

— Logic around database organisation is spread into
several places

— Goodbye cohesion!

Helpdesk

Registration website

Warehouse

Customer
DB

\\

Integration

The synchronous approach: Request/response

Create points balance

Send welcome pack

Customer service

Send welcome email

Why are the pros & cons?

Loyalty points bank

\\

(reate points balance

Integration

The synchronous approach: Request/response with RPC Customersenice

L

Send welcome pack
>

Loyalty points bank

Send welcome email |

Post service

— Remote calls are really different from local calls...

— Performance
— Cost of marshalling/unmarshalling
— Must be careful in API design to avoid overhead
— Failures are hard to detect or understand. Difficult to distinguish between faults.
— Network failing (or worse, just slow)
— Servers failing
— Service failing
— Callisincorrect
— Brittleness
— Changes to server requires changes to clients
— This leads to lock-step releases (not trivial)

Email service

\\

Integration

The asynchronous approach: Event based

Customer created
event

|
|
Customer service beccccccccccc -

Why are the pros & cons?

Publishes

\\

Integration

The asynchronous approach: Event based

— Message brokers, e.g. RabbitMQ, Kafka, etc.
— Message formats like JSON, Thrift, Protocol Buffers, etc.

Publishes

Loyalty points bank

—

Customer service

— Will guarantee on delivery, ordering, resilience, at most once delivery, etc.

PRODUCER

Publish

BROKER
& RabbitMQ

Consume

Post service

Email service

CONSUMER

Subscribe

\\

PRODUCER %

(

\.

BROKER

EXCHANGE

BINDINGS

QUEUES

5 RabbitMQ

[Direct]

Binding Key Routing
Pattern
PDF process eu.de.*

[Queue1] [Queuez

) (@) (@) (&) ()

\\

I n teg rC| t i O n Antiit ittt Loyalty points bank

event

Asynchronous adds complexity Pub"shﬁ_. Cosomer et L SUS005 __{ o e

Customerservice | "~ ~- " """ ---------—d Email service

— The message broker is a non-trivial piece of software. Needs to be operated and maintained, and
of course contains bugs.

— RPC/REST can also be implemented as asynchronous (does not make it any easier)

— Long running asynchronous requests and response becomes complicates in large systems where
the client might not be around anymore due to failure or scaling.

— May require clients to check in every once in a while, check if status has updated

\\

Secure your service

Requests over secure SSL to
http://customer.musiccorp.com

Requests over HTTP

&
Customer service
Instance A

A A R S R R A e e e A . —

Customer service
Instance B

Customer service
Instance C

VLAN boundary :

\\

Secure your service

Browser
— Authentication and Authorization
— Single-sign on gateway
— JSON Web Tokens -- JWT SSO gateway

Preauthorized calls

. ;) Redirects for
Principal attributes like roles authentication
included in headers
Identity Directory
Provides source of | Services
truth for credentials
Catalog and roles

\\

Failures - Live with it

Drives Have 3 Distinct Failure Rates

Hard Drive Survival Rates - Chart 1

“This means that 50% of hard drives
will survive until their sixth birthday.”

100%

90%

5.1%
annual failure rate

al Rate

1.4%
annual failure rate

Surviv

80%
11.8%
annual failure rate

1 2 3 4

Year Year Year Year

70%

& BACKBLAZE

« Disk failures:

« Assume: 1 server has 6 disks,

- Disk MTBF = 4.5 years

- 1000 servers in cluster => ~3.5 failures/day

10000

Running tasks

7500

Tasks?

5000

(1)

d w pending a set

(5)

upg run

2500

0
0:00:30 0:01:00 0:01:30 0:02:00 0:02:30 0:03:00

Elapsed time

ol

A 2000-machine Servic will
have >10 task exits per day

This is normal - not a problem
‘ ‘, ;_

| /(

VQUre from John Wilkes, Goobi\
|

~—

Create Havoc yourself

PRINCIPLES OF CHAOS ENGINEERING

“The discipline of experimenting on a distributed systems in order to build confidence
in the system’s capability to withstand turbulent conditions in production.”

Chaos Monkey @ Enabled

Termination frequency

Mean time between terms 2 days Minimum time between terms 1 days
Grouping App Stack @ Cluster Regions are independent
Exceptions ©
Account Region Stack Detail
prod : us-west-2 ¥ staging -

il

A
v

a»

test

Documentation

Chaos Monkey documentation can be found here .

Open source tool from Netflix

\\

CI/CD -
Continuous Integration/Continuous Deployment

CI PIPELINE CD PIPELINE

RELATED CODE

https://qitlab.datahub.erdc.ericsson.net/root/demo

@Q_ res1 </> a égé
COMMIT UNIT TES STAGING PRODUCTION
‘)_ \

\\

https://gitlab.datahub.erdc.ericsson.net

Scaling up or Scaling out?

— Scale up/down (or vertical scaling)
— Add more memory and CPUs to a single server
— Add more threads
— Ideal for legacy stateful components such as databases

— "Quickly" runs into an upper bound

— Scale out/in (or horizontal scaling)
— Add more servers
— Requires load balancing

— Cloud-native approach

\\

Cloud Native Application Design

— Design for failure, assume everything fails, and design backwards
— Make sure to avoid single points of failure

— Goal: Applications should continue to function even if the
underlying physical hardware fails, is removed, or replaced

— Couple loosely to make applications scale
— Independent components
— Design everything as a black box

— De-couple interactions

— Load-balance applications and clusters

\\

fin

\\

Back-up slides

\\

Course project

Cloudification of your favourite tool or application. It's your choice, but make it scalable, multi-tenant,
and resilient to faults.

Start by paper design. Provide and architecture as well as interaction patterns (sequence diagrams, etc.).

Discuss how to handle faults and when and how to scale.

Once we have discussed the design individually per group, you should go ahead and implement it. But
that is not enough. You should also provide a workload generator as well as a chaos animal.

The final project will be presented Nov 1.

\\

A typical cloud application architecture

Services Services
Storage

_
| |
L | :
Frontend | s 1) | / '
Load 1) o Load 1) — >
(Reverse balancer ! Application balancer Application Storage
Proxy) l = ||| Frontend | <« || || Backend | um— ~——
gci
_
stateless « > stateful

\\

A mesh of services

Frontend

Microservice

Microservice

A

o

\ v

N9V

-\ N

XL AN~
“[‘l""‘ll"l

Microservice

\\

