W

Cloud Computing

#0 - Distributed computing topics &
clouo



Homework #1

The prisoner problem

There are N prisoners. At random times, the guards will randomly select one prisoner to visit a room in
which a 2-way swilch is located. A prisoner thal is vmlmg the room can npmnlp the swilch at their will.
The warden asks if the prisoners can tell him when all prisoners have heen in the room al least ane lime
cach. If they are correct he will let them free, if they are wrong they will all be executed. Prisoners have no
way of communicating with each other apart from during a brief session before the process starts during
which thev will have to agree upon a scheme for how to solve the task. Moreover, it is not possible to
detect the current status or change of the switch’s state from outside the room (i.e., no lamp light is visible
through a window or through the door, you cannot hear the sound of the switch changmo et cetera).
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Last week: k8 architecture

Kubernetes
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Distributed Computing

A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer
unusable.

Leslie Lamport
email communication
1987

Distributed computations are concurrent programs
in which processes communicate by message passing.

Gregory R. Andrews

“Paradigms for Process Interaction in Distributed Programs”
ACM Computing Surveys 23(1), 1991
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A Distributed System

— Distributed system is composed of n processes

— A process executes a sequence of events

— Local computation

— Sending a message m

— Receiving a message m \

— Adistributed algorithm is an algorithm that runs on more than one process

N
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Inter-Process Communication Models
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Distributed Computing

Things being looked at

« the algorithm(s) of the processes
* the messages

* order, causality

* whether delivery is reliable

« whether processes crash
(and how)

« whether processes are “nice”

Things that usually aren't

« the nature of the interconnect
* time / speed

* |ocation of processes

« data formats
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Examples of distributed algorithms

—Synchronizers (time & order)
—Resource allocation, mutual exclusion
—Data Consistency
—Failure detectors
—Consensus and agreement

—Leader election

A\



Synchronous vs Asynchronous

Synchronous systems:

known upper bounds on time for computation and message delivery
or access to global clock

or execution in synchronized rounds (not realistic, unfortunately)

Asynchronous systems:
no upper bounds on time for computation and message delivery

Partially synchronous systems:
anything in between, e.g.

unknown upper bounds on time for computation and message delivery
almost-synchronized clocks

bounded-drift local clocks

approximate bounds (on execution/message delivery time)

bound on message delay, bound on relative process speeds

bound on the delay ratio between fastest and slowest message at any time

A\
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etcd

—Distributed key-value store waorker node worker node worker ncde worker nodz worker ncde

—The core component in Kubernetes ‘
—Single source of truth

—Stores state of all API objects and L B
all events that occur
Fessssssassssssansanssaney load balancer [-------=-====---

' |
—Based on the Raft consensus protocol oo e
gCDI\UCI plane nod2 ! ECO’IUOI plane no:le: : ECOI’U‘O! plane node

—Leader selection aplserver = aplserver - aplserver -
—gcnr!}e/ C?Sﬁ f%%ﬁ;%ll\e/g_rnag{:\?ger' controller-manager controller-marager controller-manager

scheduler scheduler scheduler 5
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i S5@racked el custar :l

Why is this even hard?

source


https://medium.com/better-programming/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5

Itis not only hard, itis
In general impossible

Enter: the FLP theorem

T —

Impossibility of Distributed Consensus with One Faulty
Process
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etcd

Docker

Kubzlet

Scheduler

etcc

create Pod

;

—Pod activation example:

AP Server

—All persistent data is stored in etcd

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

— Distributed data base
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Why is this even hard?

source


https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186
https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186
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More bad news: The CAP Theorem

Consistency
All clients shall see the same data at any given time.
A read must return the latest written value by any client.

Consistency

Availability
The system allows read and write operations all the
time, and these operations return within a reasonable
time.

PGrtltlon'T‘)'emn.ce . Partition- Availability
The system continues to work normally even if network  151erance
partitions occur.

The CAP theorem was proposed by Eric Brewer from UC Berkeley, and was proved theoretically by Gilbert and Lynch from NUS and MIT.



The Consensus Problem

Agreement (Safety property)

All correct processes end up with the same value

Termination (Liveness property)
All correct processes will eventually make a decision

Validity (Safety property)

The value decided upon is one of the input values

v3

v3

v3

v3‘
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A Naive Protocol

— Collect votes from all N processes

— At most one is faulty, so if one doesn't respond, count that vote as 0
— Compute majority

— Tell everyone the outcome

— They “decide” (they accept outcome)

— ... but this has a problem! Why?

A\



A Naive Protocol

— Inan asynchronous environment, we can’t detect failures reliably
— A faulty process stops sending messages but a “slow” message might confuse us
— When the vote is nearly a tie, this confusing situation really matters

A\



Failure models

Some failure models (not a complete list)

— Fail-Stop (Crash-stop)

— A processor stops, and never starts again
— Byzantine

— A processor behaves adversarially, maliciously.
— Crash-recover

— Well, it crashes and then restarts sometime later
— Omission

— Doesn't respond to input (or infinitely late)
— Timing

— Correct response, but outside required time window

Byzantine failures

No assumption about
behavior of a faulty process.

A\
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2PC (Two-Phase Comm|t)

phase 1 : phase 2

propose & vote commit or abort

propose\ //// commit()/abort()
, _agreement?
g validity?
termination?
P3 : =
/ /voteYN)g \ robustness?

P5 -




Z2PC (Two-Phase Commit)

propose()

What if proposer fails here?

commit()

What if both Pi & the proposer fails here?

S1 - aborted: Voted N, received abort()
S2 - uncertain: Voted Y, not received commit()

S3 - committed: Received commit()

A\
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3PC (Three- Phose Comm|t)

phase 1 phase 2 phase 3

propose & vote prepare to comm/t or abort commit

F;eb%?,:e commit() agr_e_ement?
propose(v) validity?
termination?
s | \ / /
ack() /done(
P5 .

how does robustness

vote Y|N differ from 2PC?




3PC (Three-Phase Commit)

propose()

prepare()

What if Pi & the proposer fails here?

S1 - aborted: voted N, received abort()

S2 - uncertain: Voted Y, not received prepare()

S3 - committable: Received prepare(), not commit()

S4 - committed: Received commit()

commit()

A\



3PC (Three-Phase Commit)

Recovery rules (run by a elected node)

If some process in state aborted 1/
send abort() to all /G_J).\ vate(N)
/ Y

else if some process in state committed - d
send commit() to all .
else if all processes in state uncertain
send abort() to all
else if some process in state commitable
send prepare() to all process in state uncertain
wait for ack() and then send commit() to all

100r1( ) )@’
aborted

committable

54 | committed
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“WE WERE ON A BREAK!
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Raft

— Designed to be understood
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Raft

startsup  times out,
starts election

Follower)

discovers current
leader or new term

times out,

. receives votes from
new election

majority of servers

C Leader)
_

discovers server
with higher term

Candidate
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Consensus using etc

mwiwnmn

"""etcd3 Leader election.
import sys

import time

from threading import Event

import etcd3

LEADER KEY = '/leader'
LEASE TTL =
SLEEP =

def put not exist(client, key, value, lease=None) :

status, = client.transaction/(
compare=[client.transactions.version (key) == 0],
success=[client.transactions.put (key, value, lease)],
failure=[],

)

return status

def leader election(client, me):

try:
lease = client.lease (LEASE TTL)
status = put not exist(client,
return status, lease

except Exception:
status = False
return status, None

LEADER KEY, me, lease)

\\

def main (me) :
client = etcd3.client ()
while True:
print('leader election')
leader, lease = leader election(client, me)

if leader:
print (me + ':
try:
while True:

leader')

lease.refresh ()
time.sleep (SLEEP)
except (Exception, KeyboardInterrupt) :

return
finally:
lease.revoke ()
else:
print('follower; standby')
election event = Event ()

def watch cb(event) :
if isinstance (event, etcd3.events.DeleteEvent) :
election event.set ()
watch id = client.add watch callback (LEADER KEY, watch cb)

try:
while not election event.is set():
time.sleep (SLEEP)
print ('new election')
except (Exception, KeyboardInterrupt) :

return
finally:
client.cancel watch(watch id)
if name == ' main ':
me = sys.argv/[l]

main (me)



Heartbeating

Some simple failure detectors
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The Byzantine Generals

— How can we handle faulty, malicious or incomplete
messages?

— Failed broadcasts for example

— May actively try to trick other processes, eg fake
message or not sending

— Is synchronous and we can detect missing message

The Byzantine Generals Problem

LEBLIE LAMPORT, ROBERT SHOSTAK, and MAHSMALL PEASE
SR rte s nal
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The Byzantine Generals

— Acity under siege by several divisions of the Byzantine army

— Each division is commanded by its own general.

— The generals communicate only using messengers.

— After observing the enemy, they must decide upon a common plan of action.

— However, some of the generals may be traitors, trying to prevent the loyal generals from reaching
agreement.

— We will assume that there is a single commanding general (Commander), and the rest of the generals
are his subordinates (Lieutenants)

A\



Objective

 All loyal generals decide upon the same plan of action
« Asmall number of traitors will not cause the loyal generals to adopt a bad plan

Formally rephrased as

<>

Byzantine General Problems

1. All loyal lieutenants obey the same order
2. If the commander is loyal, then every loyal lieutenant obeys the order he sends

A\



The Byzantine Generals =
1. Allloyal lieutenants obey the same order
2. If the commander is loyal, then every loyal lieutenant obeys the order he sends
C\ Impossible for L1 to distinguish between the two
GOVM&NBi“/

cases! = impossible to fulfil requirements 1 & 2

“at tack'

Desired behaviour
(condition #2) is

Attack! HEUTENANT ) -

e 530 Traterat”

Fig. 1. Lieatenant 2 a traivor.

Desired behaviour

(condition #1) is “hesaid ‘retrvat’ U1
Retreat! == (=) < o

— -

Fig. 2. The commancer & Lyaiios,




Minimal Bound on Traitors

There is no algorithm to reach consensus unless more than

two thirds of the generals are loyal. In other words,

impossible if n <=3m for n processes, m of which are faulty
= n>3m + 1 for all algorithms that solve the
Byzantine Generals problem

A\



A Loyal Commander and One Traitor Lieutenant

Step 1: Commander sends same
value 7to all

Step 2: Each of L1, L2, L3 forwards
the message, but L1 sends arbitrary
values

Step 3: Each node decides
L2 has {1,1,0}, 1
L3 has {1,1,X},

Both choose 1.

o 7 r'l"'l"" ‘ ’
'L Ll L 775770
ZZLIEUTENANT 72
’ » e Ere l‘a‘.‘o
4 S /
,,,,,,, AN
..........................

Use ‘1’ for ‘Attack’, or ‘O’ for ‘Retreat’, ‘X’ for other X



A Traitor Commander with Loyal Lieutenants

Step 1: Commander sends different
values to all

Step 2: Each of L1, L2, L3 forwards
the values they received from the

commander e
COMMANOER

SSA TS A / "
s ;/,,.,;,/‘/ A

Step 3: Decide 1 0
L1 has {1, 0, X},
L2 has {1, 0, X}, X
L3 has {1, 0, X}

All loyal lieutenants 0
get same result!

Use ‘1’ for ‘Attack’, or ‘O’ for ‘Retreat’, ‘X’ for other




Let's try this live
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a Only the
The commander sends a message to all / general is a

. i . .
lieutenants 1771\ \0 traitor
/ 1 O

_ ©

Use a single bit: ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’.

Each lieutenant sends the message he
received to all other lieutenants

Sender=P, Sender=P, Sender=P, Sender=P, Sender=P

{0,12} {0,13} {0,14} {1,15} {1,16}

The message {O,’?Z} /s\\\\séh\r\tq all other nodes by node 2, and so on

Each I|eutenant forwards all the messages he
recelved to all other I|eutenants

Sender=P, Sender=P, Send\er=P4 “Sender=P, Sender=P,
0132} 0,123) (0 124} {0,125} (0126}
{0,142} {0,143} {0,134y {0,135} {0,136)
{1,152} {1,153} {1,154} {0,145} {0,146}
{1,162} {1,163} {1,164 {1,165} {1,156}

(This round is not necessary when we only have one traitor)



The Decision Making

All received messages are kept and The message source is a
: . concatenation of all involved
organised in a tree structure node ids, i.e. the nodes

append their id when
forwarding a message

At Lieutenant . Message
source
Decision
Received \ K (12,0}
message - {(13,0)
{{11,11]-,1@} ) {{Dlﬂ4v@}
I i {{111“511?}
- {11, 7}
The messages [ majority (v4, vy, ... V,) }
lieutenant i The messages
receives at step lieutenant i
OoM(1) receives at step
OM(0)

= All lieutenants reach the decision ‘0’



Logical Clocks

“Time, Clocks, and the Ordering of Eventsin a
Distributed System”, Leslie Lamport, 1978

— Adistributed algorithm for find a total order of
events in a distributed system

Cpeirting 4 5ekion Goaan
Nvcms sln

Time, Clocks, and the
Ordering of Events in
a Distributed System
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The 'Happened-before’ Relation

For example:
Fig. |
' P1—1I4
- e “ path exists
0 0 % :
o o @ P2, 43 : concurrent
2 e 2
0, o, 2,

P3, 43 . concurrent

Permits out of order

message arrival
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Logical Clocks

— Logical clocks — abstract way of assigning a number to an event where the number denotes the time of
occurrence of the event

— Aclock Cia) assigns a number to an event a in process P;
— Could be a number or actual time
— The Clock Condition: a — b = C<a) < C(b) (the opposite is not true, why?)



Total Ordering

— Use system of clocks satisfying the Clock Condition to place a total ordering of all events denoted “"="

— Simply order events by the their time C{a) and break ties with any arbitrary total order
(alphabetical, etc)

— We can define a total ordering on the set of all system events
— a = bif either Ci{a) < Cb) or Ca) = Cib) and P < P

— This ordering is not unique, but well defined

A\



Data Replication

A\

— There are two primary reasons for replicating data

— Reliability

— Performance.

— Three classic approaches to replicated data
— primary copy
— multi-master

— quorum consensus

Client Client
Primary server
A for item X A Backup server
W1| |W5 \ R1| | R2 /
= e

w2 W4 W3
- y
W1. Write request R1. Read request
W2, Forward request to primary R2. Response to read

Wa3. Tell backups to update
W4, Acknowledge update
WS5. Acknowledge write completed




Example: Facebook

Read from closest server

Write to California

Other servers update cache every 15 minutes
After write: read from CA for 15 minutes

Slide: Marc Shapiro
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The Consistency Problem

— How is data replicated across a distributed system?

— The client side view :

— A set of process that reads & writes
— A distributes data store that is treated as a black box
— How & when do updates become observable?

— The server side view:
— The inside of the distributed data store
— How is data propagated and replicated between storage nodes?

Process Process

Local copy

Distributad data store

A\



Strict consistency

- All writes are instantaneously visible to all processes and absolute global time order is maintained

- Hard to achieve!

P1: Wx)a P1: YWix)a
P2: Rix)a P2: RxINIL R{x)a
(a) (b)
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Sequential consistency

— Operations on each process must be in order
— All processes see the same interleaving set of
operations, regardless of what that interleaving is.

— Cares about program order, not time

P1. WiX)a

P2: Wix)h

F3: Rx)b Rix)a
P4. RGOb R(x)a

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstraci—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprecessor
compater, such a correct execution hy each processor does not
guarantee the cerrect execution of the entire program. Additional
conditions are given which do guarantee that a computer correctly
executes multiprocess programs.

Index Terms—Computer design, concurrent computing, hardware
cerrectness, multiprocessing, parallel processing.

L —

P1. W{a

P2: Wb

PG: Ri{x)b Rix)a
P4, Rx)a R{x)b

(b)
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Causal consistency

Writes that are *potentially* causally related must be seen by all processes in the same order.
Concurrent writes may be seen in a different order by different processes.

P1: W(x)a P1: Wix)a

P2 Rixja  W0Ob P2: Wb

P3: Rix}b Rix)a P3. Rk R{x)a

F4. R(x)Ja R(x)b P4 R{x)a R{x)b
(=) (&)

S S

incorrect correct
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Eventual Consistency

— The only requirement is that all replicas will eventually be the
same.

— DNS is a well know example. Updates to a name are
distributed according to a configured pattern and in
combination with time-controlled caches; eventually, all
clients will see the update.

A AR -

EVENTUALLY
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Server Side Consistency

The algorithms that implement the consistency models of choice

— N = the number of replicas
Process Process Process

— W = the write set

— R =the read set

Distributed data store
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Server Configurations

— W+R > N = guarantee strong consistency.

— N=2, W=2, and R=1 (primary-copy scenario with synchronous replication).
— No matter from which replica the client reads, it will always get a consistent answer.

— N=2, W=1, and R=1 (primary-copy scenario with asynchronous replication).
— In this case R+W=N, and consistency cannot be guaranteed.

— With N=3 and W=3 and only two nodes available, the system will fail to write.

A\



AWS 55

PUT /key-prefix/cool-file.jpg 200
GET /key-prefix/cool-file.jpg 200

PUT /key-prefix/cool-file.jpg 200
PUT /key-prefix/cool-file.jpg 200 (new content)
GET /key-prefix/cool-file.jpg 200

GET /key-prefix/cool-file.jpg 404
PUT /key-prefix/cool-file.jpg 200
GET /key-prefix/cool-file.jpg 404

WTFI?
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Amazon S3 Data Consistency Model

Amazon S3 provides read-after-write consistency for PUTS of new objects in your S3 bucket
in all Regions with one caveat. The caveat is that if you make a HEAD or GET request to the
key name (to find if the object exists) before creating the object, Amazon S3 provides
eventual consistency for read-after-write.

Amazon S3 offers eventual consistency for overwrite PUTS and DELETES in all Regions.

Updates to a single key are atomic. For example, if you PUT to an existing key, a subsequent
read might return the old data or the updated data, but it never returns corrupted or partial
data.

\\



Consistency

CA

Partition
Tolerance

Availability

W@
cassandra

from cassandra import ConsistencyLevel

from cassandra.query import SimpleStatement

query = SimpleStatement (
"INSERT INTO users (name, age) VALUES (%s,
consistency level=ConsistencyLevel.QUORUM)

session.execute(query, ('John', 42))

\\
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Summary

— Qverview of the foundations for cloud

— Distributed systems play an crucial role in getting
things to work

— Take Jorn Janneck's course on distributed
algorithms and learn the details.

Distributed Systems (7.5hp)

To give an introduction to the fundamental concepts of distributed
systems, their properties and application in practice.

display basic knowledge of:

different types of distributed systems and their properties,
failure and recovery in distributed systems,

models and abstractions for distributed systems,

distributed models of logical time,

distributed algorithms and protocols,

and distributed state and computing.

be able to reason about properties of distributed systems,

be able to use concepts and abstractions to model distributed systems
and to express their behavior,

be able to use fundamental distributed algorithms and protocols in
managing resources, sharing state, maintaining distributed state, and
coordinate distributed computation,

be able to apply the conceptual knowledge to the implementation of
distributed algorithms on a variety of platforms.

be able to judge the suitability of models and platforms for distributed
systems for a given problem,

display a basic understanding of the tradeoffs and limits of the
concepts and techniques in distributed system design.
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