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Last week: k8 architecture
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Distributed Computing

Distributed computations are concurrent programs  
in which processes communicate by message passing. 

Gregory R. Andrews 
“Paradigms for Process Interaction in Distributed Programs” 
ACM Computing Surveys 23(1), 1991

A distributed system is one in which the failure of a computer  
you didn't even know existed can render your own computer 
unusable. 

Leslie Lamport 
email communication 
1987
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A Distributed System

— Distributed system is composed of n processes 

— A process executes a sequence of events 

— Local computation 

— Sending a message m 

— Receiving a message m 

— A distributed algorithm is an algorithm that runs on more than one process
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Inter-Process Communication Models

Message passing vs. shared memory
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Distributed Computing

Things being looked at

• the algorithm(s) of the processes 

• the messages 

• order, causality 

• whether delivery is reliable 

• whether processes crash 
(and how) 

• whether processes are “nice”

Things that usually aren't

• the nature of the interconnect 
• time / speed   
• location of processes 
• data formats
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Examples of distributed algorithms

—Synchronizers (time & order) 
—Resource allocation, mutual exclusion 
—Data Consistency  
—Failure detectors 
—Consensus and agreement 

—Leader election



Ericsson Internal  |  2018-02-21

Synchronous vs Asynchronous
Synchronous systems: 
known upper bounds on time for computation and message delivery 
or access to global clock 
or execution in synchronized rounds (not realistic, unfortunately)

Asynchronous systems: 
no upper bounds on time for computation and message delivery

Partially synchronous systems: 
anything in between, e.g. 
• unknown upper bounds on time for computation and message delivery 
• almost-synchronized clocks 
• bounded-drift local clocks 
• approximate bounds (on execution/message delivery time) 
• bound on message delay, bound on relative process speeds 
• bound on the delay ratio between fastest and slowest message at any time
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etcd

—Distributed key-value store 

—The core component in Kubernetes 
—Single source of truth 
—Stores state of all API objects and 

all events that occur 

—Based on the Raft consensus protocol 

—Leader selection  
—only one controller-manager, 

scheduler, apiserver active

source

Why is this even hard?

https://medium.com/better-programming/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5
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It is not only hard, it is 
in general impossible 

Enter: the FLP theorem 
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etcd

—Pod activation example: 

—All persistent data is stored in etcd 

— Distributed data base

source

Why is this even hard?

https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186
https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186
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Consistency 
All clients shall see the same data at any given time. 
A read must return the latest written value by any client. 

Availability 
The system allows read and write operations all the 
time, and these operations return within a reasonable 
time. 

Partition-Tolerance 
The system continues to work normally even if network 
partitions occur.

More bad news: The CAP Theorem

The CAP theorem was proposed by Eric Brewer from UC Berkeley, and was proved theoretically by Gilbert and Lynch from NUS and MIT.

Consistency

AvailabilityPartition- 
Tolerance
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The Consensus Problem

P1

P2

P3

P4

P5

v1

v2

v3

v4

v5

v3

v3

v3

v3

X

Agreement (Safety property) 
 All correct processes end up with the same value 
Termination (Liveness property) 
 All correct processes will eventually make a decision 
Validity (Safety property) 
 The value decided upon is one of the input values
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A Naïve Protocol

— Collect votes from all N processes 
— At most one is faulty, so if one doesn’t respond, count that vote as 0 
— Compute majority 
— Tell everyone the outcome  
— They “decide” (they accept outcome)  
— ... but this has a problem! Why? 
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— In an asynchronous environment, we can’t detect failures reliably  
— A faulty process stops sending messages but a “slow” message might confuse us  
— When the vote is nearly a tie, this confusing situation really matters 

A Naïve Protocol
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Failure models  

Some failure models (not a complete list)
— Fail-Stop (Crash-stop)  

— A processor stops, and never starts again 

— Byzantine 
— A processor behaves adversarially, maliciously. 

— Crash-recover 
— Well, it crashes and then restarts sometime later  

— Omission 
— Doesn’t respond to input (or infinitely late)  

— Timing 
— Correct response, but outside required time window

Byzantine failures
No assumption about
behavior of a faulty process.

Fail-Stop failures
A faulty process halts
execution prematurely.
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agreement? 
validity? 
termination? 

robustness?

2PC (Two-Phase Commit)

P1

P2

P3

P4

P5

v

propose(v)

vote(Y|N)

commit()/abort()

phase 2 
commit or abort

phase 1 
propose & vote
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S1 - aborted: Voted N, received abort() 

S2 - uncertain: Voted Y, not received commit() 

S3 - committed: Received commit() 

S0

S2

S3

propose()

vote(Y)

commit()

vote(N)

abort()

Pi

What if both Pi & the proposer fails here?

S1

2PC (Two-Phase Commit)

What if proposer fails here?
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how does robustness 
differ from 2PC?

agreement? 
validity? 
termination?

3PC (Three-Phase Commit)

P1

P2

P3

P4

P5

v

propose(v)

prepare() 
| abort()

vote(Y|N)

ack() done()

commit()

phase 2 
prepare to commit or abort

phase 1 
propose & vote

phase 3 
commit
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3PC (Three-Phase Commit)

S1 - aborted: voted N, received abort() 

S2 - uncertain: Voted Y, not received prepare() 

S3 - committable: Received prepare(), not commit() 

S4 - committed: Received commit()  

S0

S2

S3

S4

propose()

vote(Y)

prepare()

vote(N)

abort()

commit()

Pi

What if Pi & the proposer fails here?

S1
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3PC (Three-Phase Commit)

Recovery rules (run by a elected node)

If some process in state aborted 

send abort() to all 

else if some process in state committed 

send commit() to all 
else if all processes in state uncertain 

send abort() to all 

else if some process in state commitable 

    send prepare() to all process in state uncertain 

wait for ack() and then send commit() to all

aborted

committable

committed

uncertain
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Paxos and Chubby

P4XOS, dude

Took 8 years to review...
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— Designed to be understood

Raft
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Raft
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Consensus using etcd
"""etcd3 Leader election.""" 
import sys 
import time 
from threading import Event 

import etcd3 

LEADER_KEY = '/leader' 
LEASE_TTL = 5 
SLEEP = 1 

def put_not_exist(client, key, value, lease=None): 
    status, _ = client.transaction( 
        compare=[client.transactions.version(key) == 0], 
        success=[client.transactions.put(key, value, lease)], 
        failure=[], 
    ) 
    return status 

def leader_election(client, me): 
    try: 
        lease = client.lease(LEASE_TTL) 
        status = put_not_exist(client, LEADER_KEY, me, lease) 
        return status, lease 
    except Exception: 
        status = False 
        return status, None 

def main(me): 
   client = etcd3.client() 
    while True: 
        print('leader election') 
        leader, lease = leader_election(client, me) 

        if leader: 
            print(me + ': leader') 
            try: 
                while True: 
                    # do work 
                    lease.refresh() 
                    time.sleep(SLEEP) 
            except (Exception, KeyboardInterrupt): 
                return 
            finally: 
                lease.revoke() 
        else: 
            print('follower; standby') 

            election_event = Event() 
            def watch_cb(event): 
                if isinstance(event, etcd3.events.DeleteEvent): 
                    election_event.set() 
            watch_id = client.add_watch_callback(LEADER_KEY, watch_cb) 

            try: 
                while not election_event.is_set(): 
                    time.sleep(SLEEP) 
                print('new election') 
            except (Exception, KeyboardInterrupt): 
                return 
            finally: 
                client.cancel_watch(watch_id) 

if __name__ == '__main__': 
    me = sys.argv[1] 
    main(me)
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Heartbeating 
Some simple failure detectors

Central HeartbeatRing Heartbeat

Gossiping
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The Byzantine Generals 

— How can we handle faulty, malicious or incomplete 
messages? 

— Failed broadcasts for example 

— May actively try to trick other processes, eg fake 
message or not sending  

— Is synchronous and we can detect missing message
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— A city under siege by several divisions of the Byzantine army  

— Each division is commanded by its own general.  

— The generals communicate only using messengers. 

— After observing the enemy, they must decide upon a common plan of action.  

— However, some of the generals may be traitors, trying to prevent the loyal generals from reaching 
agreement. 

— We will assume that there is a single commanding general (Commander), and the rest of the generals 
are his subordinates (Lieutenants) 

The Byzantine Generals 
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Objective

• All loyal generals decide upon the same plan of action 
• A small number of traitors will not cause the loyal generals to adopt a bad plan

1. All loyal lieutenants obey the same order 
2. If the commander is loyal, then every loyal lieutenant obeys the order he sends 

Byzantine General Problems

Formally rephrased as
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Desired behaviour 
(condition #2) is 

Attack!

Desired behaviour 
(condition #1) is 

Retreat!

Impossible for L1 to distinguish between the two 
cases! ⇒ impossible to fulfil requirements 1 & 2

1. All loyal lieutenants obey the same order 

2. If the commander is loyal, then every loyal lieutenant obeys the order he sends 

The Byzantine Generals 
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Minimal Bound on Traitors 

There is no algorithm to reach consensus unless more than 
two thirds of the generals are loyal. In other words, 
impossible if  n ≤ 3m  for n processes, m of which are faulty 

⇒ n > 3m + 1 for all algorithms that solve the 

Byzantine Generals problem 



A Loyal Commander and One Traitor Lieutenant 

v

Step 2: Each of L1, L2, L3 forwards 
the message, but L1 sends arbitrary 
values

Step 3: Each node decides  
L2 has {1,1,0}, 
L3 has {1,1,X},  
Both choose 1.

v 3

Use ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’, ‘X’ for other

Step 1: Commander sends same 
value 1 to all

1
1

1

1

1

1
1

1

0

X



A Traitor Commander with Loyal  Lieutenants

v

Step 2: Each of L1, L2, L3 forwards 
the values they received from the 
commander

Step 3: Decide  
L1 has {1, 0, X}, 
L2 has {1, 0, X},  
L3 has {1, 0, X}

3

Step 1: Commander sends different  
values to all

1
X

0

Use ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’, ‘X’ for other

All loyal lieutenants 
get same result!

X

X

0
0

1

1
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Let's try this live



2

G

6

5
4

3

…

Each lieutenant sends the message he 
received to all other lieutenants

0
0

01
1

Sender=P2 Sender=P3 Sender=P4 Sender=P5 Sender=P6

{0,12} {0,13} {0,14} {1,15} {1,16}

Sender=P2 Sender=P3 Sender=P4 Sender=P5 Sender=P6

{0,132}	
{0,142}	
{1,152}	
{1,162}

{0,123}	
{0,143}	
{1,153}	
{1,163}

{0,124}	
{0,134}	
{1,154}	
{1,164}

{0,125}	
{0,135}	
{0,145}	
{1,165}

{0,126}	
{0,136}	
{0,146}	
{1,156}

Each lieutenant forwards all the messages he 
received to all other lieutenants

G

6
5

4
3

2

The commander sends a message to all 
lieutenants

Only the 
general is a 

traitor

	Use a single bit: ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’. 

2

G

6

5
4

3

…

	(This round is not necessary when we only have one traitor) 

The message {0,12} is sent to all other nodes by node 2, and so on



All received messages are kept and 
organised in a tree structure

At Lieutenant i: 

{1,1,?}

Received 
message

Message 
source

Decision
{0,12,?}	
{0,13,?}	
{0,14,?}	
{1,15,?}	
{1,16,?}

{0,12,0} 
{0,13,0} 
{0,14,0} 
{1,15,1} 
{1,16,1}

{1,1,0}

majority (v1, v2, … vn)

⇒ All lieutenants reach the decision ‘0’ 

The	messages	
lieutenant	i	

receives	at	step	
OM(0)

The	messages	
lieutenant	i	

receives	at	step	
OM(1)

The message source is a 
concatenation of all involved 
node ids, i.e. the nodes 
append their id when 
forwarding a message

The Decision Making
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Logical Clocks

— “Time, Clocks, and the Ordering of Events in a 
Distributed System”, Leslie Lamport, 1978 

— A distributed algorithm for find a total order of 
events in a distributed system
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p2, q3 : concurrent

p3, q3 : concurrent

p1 ⟶ r4

For example:

path exists

Permits out of order 
message arrival

The ‘Happened-before’ Relation
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Logical Clocks

— Logical clocks – abstract way of assigning a number to an event where the number denotes the time of 
occurrence of the event 

— A clock Ci⟨a⟩ assigns a number to an event a in process Pi 

— Could be a number or actual time 
— The Clock Condition: a ⟶ b ⟹ C⟨a⟩ < C⟨b⟩         (the opposite is not true, why?)
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Total Ordering

— Use system of clocks satisfying the Clock Condition to place a total ordering of all events denoted “⇒” 

— Simply order events by the their time C⟨a⟩ and break ties with any arbitrary total order 
(alphabetical, etc) 

— We can define a total ordering on the set of all system events 
— a ⇒ b if either Ci⟨a⟩ < Cj⟨b⟩ or Ci⟨a⟩ = Cj⟨b⟩ and Pi < Pj 

— This ordering is not unique, but well defined
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Data Replication

— There are two primary reasons for replicating data  

— Reliability  

— Performance.  

— Three classic approaches to replicated data  

— primary copy 

— multi-master 

— quorum consensus
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Example: Facebook

• Read from closest server 
• Write to California 
• Other servers update cache every 15 minutes 
• After write: read from CA for 15 minutes+ Luleå

Slide: Marc Shapiro
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The Consistency Problem 
— How is data replicated across a distributed system? 

— The client side view : 
— A set of process that reads & writes 
— A distributes data store that is treated as a black box 
— How & when do updates become observable? 

— The server side view: 
— The inside of the distributed data store 
— How is data propagated and replicated between storage nodes?



Ericsson Internal  |  2018-02-21

Strict consistency

- All writes are instantaneously visible to all processes and absolute global time order is maintained 

- Hard to achieve!

incorrectcorrect
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Sequential consistency

incorrectcorrect

— Operations on each process must be in order 
— All processes see the same interleaving set of 

operations, regardless of what that interleaving is. 
— Cares about program order, not time
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incorrect correct

Causal consistency

Writes that are *potentially* causally related must be seen by all processes in the same order. 
Concurrent writes may be seen in a different order by different processes.
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Eventual Consistency

— The only requirement is that all replicas will eventually be the 
same. 

— DNS is a well know example. Updates to a name are 
distributed according to a configured pattern and in 
combination with time-controlled caches; eventually, all 
clients will see the update. 



Ericsson Internal  |  2018-02-21

Server Side Consistency

— N = the number of replicas  

— W = the write set  

— R = the read set

The algorithms that implement the consistency models of choice



Ericsson Internal  |  2018-02-21

Server Configurations

— W+R > N ⇒ guarantee strong consistency.  

— N=2, W=2, and R=1 (primary-copy scenario with synchronous replication).  
— No matter from which replica the client reads, it will always get a consistent answer.  

— N=2, W=1, and R=1 (primary-copy scenario with asynchronous replication).  
— In this case R+W=N, and consistency cannot be guaranteed.  

— With N=3 and W=3 and only two nodes available, the system will fail to write. 
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AWS S3

WTF!?
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— Overview of the foundations for cloud 

— Distributed systems play an crucial role in getting 
things to work 

— Take Jorn Janneck's course on distributed 
algorithms and learn the details.

Summary

Distributed	Systems	(7.5hp)	

To	give	an	introduction	to	the	fundamental	concepts	of	distributed	
systems,	their	properties	and	application	in	practice.	

display	basic	knowledge	of:	
different	types	of	distributed	systems	and	their	properties,	
failure	and	recovery	in	distributed	systems,	
models	and	abstractions	for	distributed	systems,	
distributed	models	of	logical	time,	
distributed	algorithms	and	protocols,	
and	distributed	state	and	computing.	

be	able	to	reason	about	properties	of	distributed	systems,	
be	able	to	use	concepts	and	abstractions	to	model	distributed	systems	
and	to	express	their	behavior,	
be	able	to	use	fundamental	distributed	algorithms	and	protocols	in	
managing	resources,	sharing	state,	maintaining	distributed	state,	and	
coordinate	distributed	computation,	
be	able	to	apply	the	conceptual	knowledge	to	the	implementation	of	
distributed	algorithms	on	a	variety	of	platforms.	

be	able	to	judge	the	suitability	of	models	and	platforms	for	distributed	
systems	for	a	given	problem,	
display	a	basic	understanding	of	the	tradeoffs	and	limits	of	the	
concepts	and	techniques	in	distributed	system	design.


