
Slide title
70 pt

CAPITALS

Slide subtitle

Cloud Computing
#6 - Distributed computing topics &
cloud

Ericsson Internal | 2018-02-21

Homework #1

Ericsson Internal | 2018-02-21

Ericsson Internal | 2018-02-21

Last week: k8 architecture

Ericsson Internal | 2018-02-21

Distributed Computing

Distributed computations are concurrent programs
in which processes communicate by message passing.

Gregory R. Andrews
“Paradigms for Process Interaction in Distributed Programs”
ACM Computing Surveys 23(1), 1991

A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer
unusable.

Leslie Lamport
email communication
1987

Ericsson Internal | 2018-02-21

A Distributed System

— Distributed system is composed of n processes

— A process executes a sequence of events

— Local computation

— Sending a message m

— Receiving a message m

— A distributed algorithm is an algorithm that runs on more than one process

Ericsson Internal | 2018-02-21

Inter-Process Communication Models

Message passing vs. shared memory

Ericsson Internal | 2018-02-21

Distributed Computing

Things being looked at

• the algorithm(s) of the processes

• the messages

• order, causality

• whether delivery is reliable

• whether processes crash 
(and how)

• whether processes are “nice”

Things that usually aren't

• the nature of the interconnect
• time / speed
• location of processes
• data formats

Ericsson Internal | 2018-02-21

Examples of distributed algorithms

—Synchronizers (time & order)
—Resource allocation, mutual exclusion
—Data Consistency
—Failure detectors
—Consensus and agreement

—Leader election

Ericsson Internal | 2018-02-21

Synchronous vs Asynchronous
Synchronous systems:
known upper bounds on time for computation and message delivery
or access to global clock
or execution in synchronized rounds (not realistic, unfortunately)

Asynchronous systems:
no upper bounds on time for computation and message delivery

Partially synchronous systems:
anything in between, e.g.
• unknown upper bounds on time for computation and message delivery
• almost-synchronized clocks
• bounded-drift local clocks
• approximate bounds (on execution/message delivery time)
• bound on message delay, bound on relative process speeds
• bound on the delay ratio between fastest and slowest message at any time

Ericsson Internal | 2018-02-21

etcd

—Distributed key-value store

—The core component in Kubernetes
—Single source of truth
—Stores state of all API objects and

all events that occur

—Based on the Raft consensus protocol

—Leader selection
—only one controller-manager,

scheduler, apiserver active

source

Why is this even hard?

https://medium.com/better-programming/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5

Ericsson Internal | 2018-02-21

It is not only hard, it is
in general impossible

Enter: the FLP theorem

Ericsson Internal | 2018-02-21

etcd

—Pod activation example:

—All persistent data is stored in etcd

— Distributed data base

source

Why is this even hard?

https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186
https://medium.com/jorgeacetozi/kubernetes-master-components-etcd-api-server-controller-manager-and-scheduler-3a0179fc8186

Ericsson Internal | 2018-02-21

Consistency
All clients shall see the same data at any given time.
A read must return the latest written value by any client.

Availability
The system allows read and write operations all the
time, and these operations return within a reasonable
time.

Partition-Tolerance
The system continues to work normally even if network
partitions occur.

More bad news: The CAP Theorem

The CAP theorem was proposed by Eric Brewer from UC Berkeley, and was proved theoretically by Gilbert and Lynch from NUS and MIT.

Consistency

AvailabilityPartition-
Tolerance

Ericsson Internal | 2018-02-21

The Consensus Problem

P1

P2

P3

P4

P5

v1

v2

v3

v4

v5

v3

v3

v3

v3

X

Agreement (Safety property)
 All correct processes end up with the same value
Termination (Liveness property)
 All correct processes will eventually make a decision
Validity (Safety property)
 The value decided upon is one of the input values

Ericsson Internal | 2018-02-21

A Naïve Protocol

— Collect votes from all N processes
— At most one is faulty, so if one doesn’t respond, count that vote as 0
— Compute majority
— Tell everyone the outcome
— They “decide” (they accept outcome)
— ... but this has a problem! Why?

Ericsson Internal | 2018-02-21

— In an asynchronous environment, we can’t detect failures reliably
— A faulty process stops sending messages but a “slow” message might confuse us
— When the vote is nearly a tie, this confusing situation really matters

A Naïve Protocol

Ericsson Internal | 2018-02-21

Failure models

Some failure models (not a complete list)
— Fail-Stop (Crash-stop)

— A processor stops, and never starts again

— Byzantine
— A processor behaves adversarially, maliciously.

— Crash-recover
— Well, it crashes and then restarts sometime later

— Omission
— Doesn’t respond to input (or infinitely late)

— Timing
— Correct response, but outside required time window

Byzantine failures
No assumption about
behavior of a faulty process.

Fail-Stop failures
A faulty process halts
execution prematurely.

Ericsson Internal | 2018-02-21

agreement?
validity?
termination?

robustness?

2PC (Two-Phase Commit)

P1

P2

P3

P4

P5

v

propose(v)

vote(Y|N)

commit()/abort()

phase 2 
commit or abort

phase 1 
propose & vote

Ericsson Internal | 2018-02-21

S1 - aborted: Voted N, received abort()

S2 - uncertain: Voted Y, not received commit()

S3 - committed: Received commit()

S0

S2

S3

propose()

vote(Y)

commit()

vote(N)

abort()

Pi

What if both Pi & the proposer fails here?

S1

2PC (Two-Phase Commit)

What if proposer fails here?

Ericsson Internal | 2018-02-21

how does robustness
differ from 2PC?

agreement?
validity?
termination?

3PC (Three-Phase Commit)

P1

P2

P3

P4

P5

v

propose(v)

prepare()
| abort()

vote(Y|N)

ack() done()

commit()

phase 2 
prepare to commit or abort

phase 1 
propose & vote

phase 3 
commit

Ericsson Internal | 2018-02-21

3PC (Three-Phase Commit)

S1 - aborted: voted N, received abort()

S2 - uncertain: Voted Y, not received prepare()

S3 - committable: Received prepare(), not commit()

S4 - committed: Received commit()

S0

S2

S3

S4

propose()

vote(Y)

prepare()

vote(N)

abort()

commit()

Pi

What if Pi & the proposer fails here?

S1

Ericsson Internal | 2018-02-21

3PC (Three-Phase Commit)

Recovery rules (run by a elected node)

If some process in state aborted

send abort() to all

else if some process in state committed

send commit() to all
else if all processes in state uncertain

send abort() to all

else if some process in state commitable

 send prepare() to all process in state uncertain

wait for ack() and then send commit() to all

aborted

committable

committed

uncertain

Ericsson Internal | 2018-02-21

Paxos and Chubby

P4XOS, dude

Took 8 years to review...

Ericsson Internal | 2018-02-21

— Designed to be understood

Raft

Ericsson Internal | 2018-02-21

Raft

Ericsson Internal | 2018-02-21

Consensus using etcd
"""etcd3 Leader election."""
import sys
import time
from threading import Event

import etcd3

LEADER_KEY = '/leader'
LEASE_TTL = 5
SLEEP = 1

def put_not_exist(client, key, value, lease=None):
 status, _ = client.transaction(
 compare=[client.transactions.version(key) == 0],
 success=[client.transactions.put(key, value, lease)],
 failure=[],
)
 return status

def leader_election(client, me):
 try:
 lease = client.lease(LEASE_TTL)
 status = put_not_exist(client, LEADER_KEY, me, lease)
 return status, lease
 except Exception:
 status = False
 return status, None

def main(me):
 client = etcd3.client()
 while True:
 print('leader election')
 leader, lease = leader_election(client, me)

 if leader:
 print(me + ': leader')
 try:
 while True:
 # do work
 lease.refresh()
 time.sleep(SLEEP)
 except (Exception, KeyboardInterrupt):
 return
 finally:
 lease.revoke()
 else:
 print('follower; standby')

 election_event = Event()
 def watch_cb(event):
 if isinstance(event, etcd3.events.DeleteEvent):
 election_event.set()
 watch_id = client.add_watch_callback(LEADER_KEY, watch_cb)

 try:
 while not election_event.is_set():
 time.sleep(SLEEP)
 print('new election')
 except (Exception, KeyboardInterrupt):
 return
 finally:
 client.cancel_watch(watch_id)

if __name__ == '__main__':
 me = sys.argv[1]
 main(me)

Ericsson Internal | 2018-02-21

Heartbeating
Some simple failure detectors

Central HeartbeatRing Heartbeat

Gossiping

Ericsson Internal | 2018-02-21

The Byzantine Generals

— How can we handle faulty, malicious or incomplete
messages?

— Failed broadcasts for example

— May actively try to trick other processes, eg fake
message or not sending

— Is synchronous and we can detect missing message

Ericsson Internal | 2018-02-21

— A city under siege by several divisions of the Byzantine army

— Each division is commanded by its own general.

— The generals communicate only using messengers.

— After observing the enemy, they must decide upon a common plan of action.

— However, some of the generals may be traitors, trying to prevent the loyal generals from reaching
agreement.

— We will assume that there is a single commanding general (Commander), and the rest of the generals
are his subordinates (Lieutenants)

The Byzantine Generals

Ericsson Internal | 2018-02-21

Objective

• All loyal generals decide upon the same plan of action
• A small number of traitors will not cause the loyal generals to adopt a bad plan

1. All loyal lieutenants obey the same order
2. If the commander is loyal, then every loyal lieutenant obeys the order he sends

Byzantine General Problems

Formally rephrased as

Ericsson Internal | 2018-02-21

Desired behaviour
(condition #2) is

Attack!

Desired behaviour
(condition #1) is

Retreat!

Impossible for L1 to distinguish between the two
cases! ⇒ impossible to fulfil requirements 1 & 2

1. All loyal lieutenants obey the same order

2. If the commander is loyal, then every loyal lieutenant obeys the order he sends

The Byzantine Generals

Ericsson Internal | 2018-02-21

Minimal Bound on Traitors

There is no algorithm to reach consensus unless more than
two thirds of the generals are loyal. In other words,
impossible if n ≤ 3m for n processes, m of which are faulty

⇒ n > 3m + 1 for all algorithms that solve the

Byzantine Generals problem

A Loyal Commander and One Traitor Lieutenant

v

Step 2: Each of L1, L2, L3 forwards
the message, but L1 sends arbitrary
values

Step 3: Each node decides
L2 has {1,1,0},
L3 has {1,1,X},
Both choose 1.

v 3

Use ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’, ‘X’ for other

Step 1: Commander sends same
value 1 to all

1
1

1

1

1

1
1

1

0

X

A Traitor Commander with Loyal Lieutenants

v

Step 2: Each of L1, L2, L3 forwards
the values they received from the
commander

Step 3: Decide
L1 has {1, 0, X},
L2 has {1, 0, X},
L3 has {1, 0, X}

3

Step 1: Commander sends different
values to all

1
X

0

Use ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’, ‘X’ for other

All loyal lieutenants
get same result!

X

X

0
0

1

1

Ericsson Internal | 2018-02-21

Let's try this live

2

G

6

5
4

3

…

Each lieutenant sends the message he
received to all other lieutenants

0
0

01
1

Sender=P2 Sender=P3 Sender=P4 Sender=P5 Sender=P6

{0,12} {0,13} {0,14} {1,15} {1,16}

Sender=P2 Sender=P3 Sender=P4 Sender=P5 Sender=P6

{0,132}	
{0,142}	
{1,152}	
{1,162}

{0,123}	
{0,143}	
{1,153}	
{1,163}

{0,124}	
{0,134}	
{1,154}	
{1,164}

{0,125}	
{0,135}	
{0,145}	
{1,165}

{0,126}	
{0,136}	
{0,146}	
{1,156}

Each lieutenant forwards all the messages he
received to all other lieutenants

G

6
5

4
3

2

The commander sends a message to all
lieutenants

Only the
general is a

traitor

	Use a single bit: ‘1’ for ‘Attack’, or ‘0’ for ‘Retreat’.

2

G

6

5
4

3

…

	(This round is not necessary when we only have one traitor)

The message {0,12} is sent to all other nodes by node 2, and so on

All received messages are kept and
organised in a tree structure

At Lieutenant i:

{1,1,?}

Received
message

Message
source

Decision
{0,12,?}	
{0,13,?}	
{0,14,?}	
{1,15,?}	
{1,16,?}

{0,12,0}
{0,13,0}
{0,14,0}
{1,15,1}
{1,16,1}

{1,1,0}

majority (v1, v2, … vn)

⇒ All lieutenants reach the decision ‘0’

The	messages	
lieutenant	i	

receives	at	step	
OM(0)

The	messages	
lieutenant	i	

receives	at	step	
OM(1)

The message source is a
concatenation of all involved
node ids, i.e. the nodes
append their id when
forwarding a message

The Decision Making

Ericsson Internal | 2018-02-21

Logical Clocks

— “Time, Clocks, and the Ordering of Events in a
Distributed System”, Leslie Lamport, 1978

— A distributed algorithm for find a total order of
events in a distributed system

Ericsson Internal | 2018-02-21

p2, q3 : concurrent

p3, q3 : concurrent

p1 ⟶ r4

For example:

path exists

Permits out of order
message arrival

The ‘Happened-before’ Relation

Ericsson Internal | 2018-02-21

Logical Clocks

— Logical clocks – abstract way of assigning a number to an event where the number denotes the time of
occurrence of the event

— A clock Ci⟨a⟩ assigns a number to an event a in process Pi

— Could be a number or actual time
— The Clock Condition: a ⟶ b ⟹ C⟨a⟩ < C⟨b⟩ (the opposite is not true, why?)

Ericsson Internal | 2018-02-21

Total Ordering

— Use system of clocks satisfying the Clock Condition to place a total ordering of all events denoted “⇒”

— Simply order events by the their time C⟨a⟩ and break ties with any arbitrary total order
(alphabetical, etc)

— We can define a total ordering on the set of all system events
— a ⇒ b if either Ci⟨a⟩ < Cj⟨b⟩ or Ci⟨a⟩ = Cj⟨b⟩ and Pi < Pj

— This ordering is not unique, but well defined

Ericsson Internal | 2018-02-21

Data Replication

— There are two primary reasons for replicating data

— Reliability

— Performance.

— Three classic approaches to replicated data

— primary copy

— multi-master

— quorum consensus

Ericsson Internal | 2018-02-21

Example: Facebook

• Read from closest server
• Write to California
• Other servers update cache every 15 minutes
• After write: read from CA for 15 minutes+ Luleå

Slide: Marc Shapiro

Ericsson Internal | 2018-02-21

The Consistency Problem
— How is data replicated across a distributed system?

— The client side view :
— A set of process that reads & writes
— A distributes data store that is treated as a black box
— How & when do updates become observable?

— The server side view:
— The inside of the distributed data store
— How is data propagated and replicated between storage nodes?

Ericsson Internal | 2018-02-21

Strict consistency

- All writes are instantaneously visible to all processes and absolute global time order is maintained

- Hard to achieve!

incorrectcorrect

Ericsson Internal | 2018-02-21

Sequential consistency

incorrectcorrect

— Operations on each process must be in order
— All processes see the same interleaving set of

operations, regardless of what that interleaving is.
— Cares about program order, not time

Ericsson Internal | 2018-02-21

incorrect correct

Causal consistency

Writes that are *potentially* causally related must be seen by all processes in the same order.
Concurrent writes may be seen in a different order by different processes.

Ericsson Internal | 2018-02-21

Eventual Consistency

— The only requirement is that all replicas will eventually be the
same.

— DNS is a well know example. Updates to a name are
distributed according to a configured pattern and in
combination with time-controlled caches; eventually, all
clients will see the update.

Ericsson Internal | 2018-02-21

Server Side Consistency

— N = the number of replicas

— W = the write set

— R = the read set

The algorithms that implement the consistency models of choice

Ericsson Internal | 2018-02-21

Server Configurations

— W+R > N ⇒ guarantee strong consistency.

— N=2, W=2, and R=1 (primary-copy scenario with synchronous replication).
— No matter from which replica the client reads, it will always get a consistent answer.

— N=2, W=1, and R=1 (primary-copy scenario with asynchronous replication).
— In this case R+W=N, and consistency cannot be guaranteed.

— With N=3 and W=3 and only two nodes available, the system will fail to write.

Ericsson Internal | 2018-02-21

AWS S3

WTF!?

Ericsson Internal | 2018-02-21

Ericsson Internal | 2018-02-21

Ericsson Internal | 2018-02-21

— Overview of the foundations for cloud

— Distributed systems play an crucial role in getting
things to work

— Take Jorn Janneck's course on distributed
algorithms and learn the details.

Summary

Distributed	Systems	(7.5hp)	

To	give	an	introduction	to	the	fundamental	concepts	of	distributed	
systems,	their	properties	and	application	in	practice.	

display	basic	knowledge	of:	
different	types	of	distributed	systems	and	their	properties,	
failure	and	recovery	in	distributed	systems,	
models	and	abstractions	for	distributed	systems,	
distributed	models	of	logical	time,	
distributed	algorithms	and	protocols,	
and	distributed	state	and	computing.	

be	able	to	reason	about	properties	of	distributed	systems,	
be	able	to	use	concepts	and	abstractions	to	model	distributed	systems	
and	to	express	their	behavior,	
be	able	to	use	fundamental	distributed	algorithms	and	protocols	in	
managing	resources,	sharing	state,	maintaining	distributed	state,	and	
coordinate	distributed	computation,	
be	able	to	apply	the	conceptual	knowledge	to	the	implementation	of	
distributed	algorithms	on	a	variety	of	platforms.	

be	able	to	judge	the	suitability	of	models	and	platforms	for	distributed	
systems	for	a	given	problem,	
display	a	basic	understanding	of	the	tradeoffs	and	limits	of	the	
concepts	and	techniques	in	distributed	system	design.

