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The Magic of Feedback

Good properties:

◮ Attenuate effects of disturbances - process control, automotive

◮ Make good systems from bad components - feedback amplifier

◮ Follow command signals - robotics, automotive

◮ Stabilize and shape behavior - flight control

Bad properties:

◮ Feedback may cause instability

◮ Feedback feeds measurement noise into the system

Arthur C. Clarke: Any sufficiently advanced technology is indistinguishable
from magic



The Magic of Integral Action

Consider a system (linear or nonlinear) controlled by a controller having
integral action

u(t) =

∫ t

0
e(τ)dτ + ....

If the closed loop is stable then the equilibrium must be such that the error
is zero!
Proof: Assume that the error converges to a nonzero value leads to a
contratdction!



Important Issues

◮ Some important considerations

Load disturbances
Measurement noise
Process variations
Uncertainties in modeling
Command signal following

◮ Evaluation, testing and specifications of control systems

◮ Quantification of performance and robustness

◮ Measurement and testing of performance and robustness

◮ Limitations what can and cannot be achieved by feedback



A Basic Feedback Loop
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Ingredients:

◮ Controller: feedback C, feedforward F

◮ Load disturbance d : Drives the system from desired state - e.g.
slope of road

◮ Process: transfer function P

◮ Measurement noise n : Corrupts information about x

◮ Process variable x should follow reference r



Quiz

Look at the block diagram
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Find transfer function from r to u!

The Audience is Thinking ...



Quiz

Look at the block diagram
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Find transfer function from r to u!

The Audience is Thinking ...

Simple rule: blocks between singnals and 1 + PC in denominator!!

Gur =
CF

1 + PC



A More General Setting

Load disturbances and measurement need not enter at the process input
and measurement noise not at the output. A more general situation is.

C

P
yu

zn, d

w = (d, n, ysp), z = (e, v), find C to make z small!
These problems can be dealt with in the same way but we will stick to the
simpler case. Always useful to understand disturbances, who they are and
where they enter the system.



Typical Requirements

A controller should

A: Reduce effects of load disturbances

B: Do not inject too much measurement noise into the system

C: Make the closed loop insensitive to variations in the process

D: Make output follow command signals

Performance is expressed by

◮ Response to command signals

◮ Attenuation of load disturbances

Robustness is expressed by sensitivity to

◮ Load disturbances

◮ Model uncertainty
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Controller with Two Degrees of Freedom

F C P

Controller Process

−1

Σ Σ Σ
r e u

d

x

n

yv

◮ Load disturbance d : Drives the system from desired state

◮ Measurement noise n : Corrupts information about x

The controller has two degrees of freedom 2DOF because the signal
transmissions from reference r to control u and from measurement y to
control u are different. Horowitz 1963.



A Separation Principle for 2DOF Systems

Design the feedback C to achieve

◮ Low sensitivity to load disturbances d

◮ Low injection of measurement noise n

◮ High robustness to process uncertainty and process variations

Design the feedforward F to achieve

◮ Desired response to command signals r



Many Versions of 2DOF
Basic loop

Σ
r
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Explicit representation of ideal response ym and control signal uff
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For linear systems all 2DOF configurations have the same properties. For
the systems above we have CF = Mu + CMy



Many Versions of 2DOF - Kalman Filter Architecture

Trajectory
Generator
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◮ A nice separation of the different functions

◮ The signals xm and uff can be generated from r in real time or from
stored tables



Some Systems only Allow Error Feedback

Disk drive

Atomic Force Microscope

Only error can be measured
Design for command disturbance attenuation, robustness

and command signal response can not be separated!
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System with Error Feedback
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Three inputs r, d and n, four interesting signals e, u, x and y!
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The Gang of Four GOF - controller with error feedback

Gxr =
PC

1 + PC
, Gxd =

P

1 + PC
Gxn = −

PC

1 + PC
,

Gyr =
PC

1 + PC
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,

Only four transfer functions!!! (Sensitivity functions - the Gang of Four)!

S =
1

1 + PC
, T =

PC

1 + PC
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P

1 + PC
, CS =

C
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Interpretation of The Gang of Four

Response of output y to load disturbance d is characterized by

Gyd =
P

1 + PC
= PS =

T

C

Response of control signal u to measurement noise n is characterized by

Gun = −
C

1 + PC
= −CS = −

T

P

Responses of y and u to reference signal r are characterized by

Gyr =
PC

1 + PC
= T , Gur =

C

1 + PC
= CS

Robustness to process variations is characterized by

S =
1

1 + PC
, T =

PC

1 + PC



Visualizing the GOF - Time Responses
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Another Way to Show Time Responses
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Visualizing the GOF - Frequency Responses
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Gain curves for the GOF is a good way to get a quick overview of a
feedback system. Curves represent three different controller are designed
for a nano-positioner

Discuss!



A Warning!

Remember to always look at all responses!
The step response below looks fine
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All Four Responses
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The system is unstable!
What is going on?



The Gang of Four

Process: P(s) =
1

s− 1
, Controller: C(s) =

s− 1

s

Loop transfer function: L = PC =
1

s− 1
$

s− 1

s
=

1

s

Notice cancellation of the factor s− 1! The Gang of Four

PC
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P
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C
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=
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1
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Response of y to step in load disturbance d

Gyd(s) =
P

1 + PC
=

s

(s + 1)(s− 1)

This transfer function represents an unstable system



2DOF System General – The Gang of Seven
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The Gang of Four and transfer functions from reference r to e, x, y and u
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Some Observations

◮ To fully understand a system it is necessary to look at all transfer
functions

◮ A system based on error feedback is characterized by four transfer
functions The Gang of Four

◮ The system with a controller having two degrees of freedom is
characterized by seven transfer function The Gang of Seven

◮ It may be strongly misleading to only show properties of a few
systems for example the response of the output to command signals.
A common omission in many papers and books.

◮ The properties of the different transfer functions can be illustrated by
their transient or frequency responses.
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The Sensitivity Functions

◮ Sensitivity function S =
1

1 + PC
=

1

1 + L

◮ Complementary sensitivity function T = 1− S =
PC

1 + PC
=

L

1 + L

◮ Input sensitivity function Gxl =
P

1 + PC
= PS

◮ Output sensitivity function Gun =
C

1 + PC
= CS

are called sensitivity functions. They have interesting properties and useful
physical interpretations. We have

◮ The functions S and T only depend on the loop transfer function L

◮ S + T = 1

◮ Typically S(0) small and S(∞) = 1 and consequently T(0) = 1 and
T(∞) small



Poles Zeros and Sensitivity Functions

The sensitivity functions depend only on the loop transfer function L = PC

S =
1

1 + L
T =

L

1 + L

Notice that

◮ The sensitivity function S is zero and the complementary sensitivity
function is one at the poles of L

◮ The sensitivity function S is one and complementary sensitivity
function T is zero at the zeros of L



Disturbance Attenuation

r = 0

d n
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P ΣΣ

Process

u ycl

d n

−C

PΣ Σ

Process

Output without control Y = Yol(s) = N(s) + P(s)D(s)
Output with feedback control

Ycl =
1

1 + PC

(

N + PD
)

=
1

1 + PC
Yol = SYol

The effect of feedback is thus like sending the open loop output through a
system with the transfer function S = 1/(1 + PC). Disturbances with
frequencies such that pS(iω)p < 1 are reduced by feedback, disturbances
with frequencies such that pS(iω)p > 1 are amplified by feedback.



Assessment of Disturbance Reduction - Bode

We have
Ycl(s)

Ycl(s)
= S(s) =

1

1 + P(s)C(s)

Feedback attenuates disturbances of frequencies ω such that pS(iω)p <.
It amplifies disturbances of frequencies such that pS(iω)p > 1
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Assessment of Disturbance Reduction - Nyquist

Ycl

Yol

=
1

1 + PC
= S

Geometric interpretation: Distur-
bances with frequencies inside
the circle are amplified by feed-
back. Disturbances with frequen-
cies outside the circle are re-
duced. Disturbancds with fre-
quencies inside the circle are am-
plified. Worst amplifiaticon for
frequencies closest to the critical
point
Disturbances with frequencies
less than ω s are reduced by
feedback, those with higher
frequencies afre amplified.

−1
ωms
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Properties of the Sensitivity Function

◮ Can the sensitivity be small for all frequencies?

No we have S(∞) = 1!

◮ Can we have pS(iω)p ≤ 1?

If the Nyquist curve of L = PC is in the first and third quadrant!
Passive systems!

◮ Bode’s integral, pk RHP poles of L(s), zk RHP zeros of L(s)

∫∞

0
log pS(iω)pdω = π

∑

Re pk −
π

2
lim

s→∞
sL(s)

◮ Fast poles (and slow zeros) in the RHP are bad!

◮ Useful to let the loop transfer function go to zero rapidly for high
frequencies (high-frequency roll-off) because the last term vanishes

◮ The "water-bed effect". Push the curve down at one frequency and it
pops up at another! Design is a compromise!



The Water Bed Effect - Bode’s Integral
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The sensitivity can be decreased at one frequency at the cost of increasing
it at another frequency.

Feedback design is a trade-off



Robustness

Effect of small process changes dP on closed loop response
T = PC/(1 + PC)

dT

dP
=

C

(1 + PC)2
=

ST

P
,

dT

T
= S

dP

P

Effect of large process canges:
how much ∆P can the process
change without making the closed
loop unstable?

pC∆Pp < p1 + PCp

or
p∆Pp

pPp
<

1

pT p

∆P must be stable

Nyquist plot
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n

x

y
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Another View of Robustness

A feedback system where the process has multiplicative uncertainty, i.e.
P +∆P = P(1 + δ ), where δ = ∆P/P is the relative error, can be
represented with the following block diagrams

P

−C

Σ

δ δ

−
PC

1 + PC

The small gain theorem gives the stability condition

pδ p =
p∆Pp

pPp
<

∣

∣

∣

1 + PC

PC

∣

∣

∣ =
1

pT p

Same result as obtained before!



Robustness and Sensitivity

Gain and phase margins

gm ≥
Ms

Ms − 1
, φm ≥ 2 arcsin

1

2Ms

Constraints on both gain and phase margins
can be replaced by one constraint on maxi-
mum sensitivity Ms.

x

y

1/Ms ωms

ω s

−1

◮ Ms = 2 guarantees gm ≥ 2 and φm ≥ 30○

◮ Ms = 1.6 guarantees gm ≥ 2.7 and φm ≥ 36○

◮ Ms = 1.4 guarantees gm ≥ 3.5 and φm ≥ 42○

◮ Ms = 1 guarantees gm =∞ and φm ≥ 60○



When are Two Systems Close?
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Comparing open loop step responses can be misleading!
Open loop frequency responses are slightly better

Much better to compare closed loop responses



Vinnicombe’s Metric

Intuition



Summary of the Sensitivity Functions

S =
1

1 + L
, T =

L

1 + L
, Ms = max pS(iω)p, Mt = max pT(iω)p

The value 1/Ms is the shortest distance from the Nyquist curve of the loop
transfer function L(iω) to the critical point −1.

S =
� log T

� log P
=

Ycl(s)

Yol(s)

How much can the process be changed with stable ∆P without making the closed
loop system unstable?

p∆Pp

pPp
<

1

pT p

Bode’s integral the water bed effect.

∫∞

0

log pS(iω)pdω = π
∑

Re pk −
π

2
lim

s→∞
sL(s)



Requirements and Sensitivity Functions

Disturbances

◮ Effect of feedback: ycl = Syol

◮ Load disturbances: Gyd = PS

◮ Measurement noise: Gun = −CS

Process uncertainty

◮ Small variations: δT/T = SδP/P

◮ Large variations: p∆Pp/pPp ≤ 1/pT p, stable ∆P

◮ Gain and phase and sensitivity margins: gm, φm, sm = 1
Ms

Command signal following

◮ Error feedback: Gyr = T , Gur = CS

◮ 2DOF: Gyr = TF , Gur = CSF



Testing Requirements

Introduce test points in the control system!
Use test signals in design phase and on the real system!
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Fundamental Limitations

Large signal behavior

◮ Limits on actuation: size and rate

◮ Limits due to equipment safety

Small signal behavior

◮ Sensor noise

◮ Resolution of AD and DA converters

◮ Friction

Dynamics

◮ Nonminimum phase dynamics

Right half plane zeros
Right half plane poles (instabilities)
Time delays



Voice coil drive for a hard disk drive

J
d2φ

dt2
= T = kt I

m
d2x

dt2
= F = kt I

r = 0.05 m

J = 5$ 10−6
kg m

2

m = 2$ 10−3
kg

kt = 2 N/A

Imax = 0.5A

Vmax = 5 V

Maximum acceleration amax =
kt Imax

m
= 500 m/s2 (50g) Maximum

velocity vmax =
Vmax

kt

= 2.5 m/s



Minimum Time Transitions
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Limitations due to NMP Dynamics

Process dynamics can impose severe limitations on what can be achieved.

◮ An important part of recognizing the difficult problems

◮ Time delays and RHP zeros limit the achievable bandwidth

◮ Poles in the RHP requires high bandwidth

◮ Systems with poles and zeros in the right half plane can be very
difficult or even impossible to control robustly. Think about the bicycle
with rear wheel steering!

Remedies:

◮ Add sensors and actuators (changes and removes zeros) or redesign
the process



The First IEEE Bode Lecture 1989

Video by IEEE
http://www.ieeecss-oll.org/video/respect-unstable

Published in IEEE Control Systems Magazine August 2003



Summary of Dynamics Limitations

◮ A RHP zero z limits the achievable gain crossover frequency

ωgc ≤ z

√

Ms − 1

Ms + 1

◮ A RHP pole p requires a high gain crossover frequency

ωgc ≥ p

√

Ms + 1

Ms − 1

◮ A RHP pole-zero pair gives a lower bound to the maximum
sensitivities

Ms ≥
∣

∣

∣

p + z

p− z

∣

∣

∣
, Mt ≥

∣

∣

∣

p + z

p− z

∣

∣

∣

◮ A RHP pole p and a time delay τ gives a lower bound to the
maximum sensitivities

Ms ≥ e
pτ , Mt ≥ e

pτ



Bode Plots – Nonminimum Phase Systems
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Assessment Plots – Achievable Gain Crossover Frequencies

Process transfer function P(s) = 1
1+sT

e−s
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◮ Blue line: phase curve for process transfer function G = GmpGap

◮ Red dashed line: phase curve for allpass factor of process transfer
function (Gap = e−s).

◮ Red full vertical line: phaselag of allpass component of process
transfer function Gap(s) is 60○

◮ Designs for 45○ phase margin for pure I: phase −45○, P: phase
−135○ and D: phase −225○ controllers



Consequences for Design

◮ Poles are intrinsic properties of the system

◮ Changing poles requires redesign of the system

◮ Zeros depend on how inputs and outputs are coupled to the states

◮ Zeros and time delays can be changed by moving or adding sensors
(and actuators)

A nice property of the FOTD P(s) =
K

1 + sT
e−sL and SOTD

P(s) =
K

(1 + sT1)(1 + sT2)
e−sL are that they capture the time delay

which limits the achievable performance. Time delay is influenced by
sensor positions!



Stabilizing an Inverted Pendulum with Delay

Right half plane pole at

p =
√

g/{

Requiring pτ < 0.33 gives τ
√

g/{ < 0.33
or

{ >
gτ 2

0.33
( 100τ 2

A neural lag of 0.07 s gives { > 0.5 m
Make a demo!

A vision based system with sampling rate of 50 Hz (a time delay of 0.02 s)
can robustly stabilize the pendulum if { > 0.04 m.



Example - The X-29

Advanced experimental aircraft. Much design effort was done with many
methods and much cost. Specifications φm = 45○ could not be reached.

Nonminimum phase factor

Pnmp(s) =
s− 26

s− 6

The zero-pole ratio is
z

p
=

13

3

Ms ≥
13 + 3

13− 3
= 1.6

φm ≤ 2 arcsin
1

2Ms

= 36○

The simple calculation shows
that it is impossible to obtain a phase margin of 45○!

Millions of dollars could have been saved!!



Bicycles with Rear Wheel Steering

Whitt and Wilson Bicycling Science 1982

Many people have seen theoretical advantages in

the fact that front-drive, rear-steered recumbent

bicycles would have simpler transmissions than

rear-driven recumbents and could have the cen-

ter of mass nearer the front wheel than the rear.

The U.S. Department of Transportation commis-

sioned the construction of a safe motorcycle with

this configuration. It turned out to be safe in an

unexpected way: No one could ride it.

The difficulties are caused by the dynamical properties of rear wheel
steering. One reason for learning control is to find such difficulties at an
early stage of the design.



Richard Klein University of Illinois
Using bicycles in control education for Mechanical Engineers



Bicycle with Rear Wheel Steering

Transfer function regular bike

P(s) =
am{V0

bJ

s +
V0

a

s2 −
mg{

J

Transfer function rear wheel
steering (change sign of V0)

P(s) =
am{V0

bJ

−s +
V0

a

s2 −
mg{

J

RHP pole at
√

mg{/J

RHP zero at −V0/a

Klein’s bikes



The Lund Unridable Rear-Steered Bike



The UCSB Ridable Rear-Steered Bike
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Summary

◮ Error feedback and systems with two degrees of freedom 2DOF

2DOF allows separation of command signal response from the other
requirements

◮ A system with error feedback is characterized by four transfer
functions (Gang of Four GOF) S, T , PS, CS

◮ A system with two degrees of freedom is characterized by seven
transfer functions (Gang of Seven = GOF, FS, FT and FCS)

◮ Several transfer functions are required to understand a feedback
system. Analysis and specifications should cover all transfer
functions!

◮ There are fundamental limiations caused by nonlinear as well as
linear non-minimum phase dynamics


