
Proximal Gradient Method

Pontus Giselsson

1

Today’s lecture

• Proximal gradient method

• Key properties for convergence

2

Problem formulation

• Empirical risk minimization problems are of form

minimize
x

1
N

N∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+g(x)

• We assume that:
• all fi and g are convex
• all fi are differentiable with Li Lipschitz gradient

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖
• f has L-Lipschitz gradient
• g is not necessarily differentiable (1-norm, indicator of set)
• g is (typically) separable (often with g1 = . . . = gn)

g(x) =
n∑

i=1

gi(xi)

• (Note x and y are variables here, not data! Also xi is ith element)

3

Lipschitz continuity

• The gradient ∇f is β-Lipschitz continuous if

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖

holds for all x, y

• Graphical representation (∇f(x)−∇f(y) in gray area)

0 x− y

β

• 1-Lipschitz is called nonexpansive

4

Gradient method with Lipschitz gradient

• Let γ be such that γ∇f is 1
2 -Lipschitz

• Gradient method

xk+1 := (I − γ∇f)xk

tries to solve problem (which is special case with g ≡ 0):

minimize
x

f(x)

• Problem solved if ∇f(x?) = 0, i.e., if

x? = (I − γ∇f)x?,

i.e., x? is fixed-point of forward (gradient) step (I − γ∇f)

5

Gradient mapping properties

• The gradient mapping G := I − γ∇f satisfies

• (recall γ∇f is 1
2 -Lipschitz)

1
2

0 x− y

γ∇f

0 x− y

−γ∇f

0 x− y

I − γ∇f

• Rightmost figure shows where G(x)−G(y) can end up

6

Gradient mapping properties

• Let y = x? with x? fixed-point of I − γ∇f and shift figure by x?:

0 x− y

I − γ∇f

x? x

I − γ∇f

• Right figure shows where G(x)−G(x?) + x? = G(x) can end up

• Gradient step G(x) = I − γ∇f can take you further away from x?

• Gradient method does not work?

• (Recall: fixed-point x? of G = I − γ∇f is solution to problem)

7

Circle exercise

• If Tx−Ty ends up in gray area, given x−y, how about αT +βI?

• Take every possible v = Tx− Ty and compute αv + β(x− y)

0 x− y

T

x− y

−T

x− y

2T

x− y

T − 1.5I

8

Convexity

• We have not exploited that f is convex

• A differentiable function is convex if and only if for all x, y

f(x) ≥ f(y) + 〈∇f(y), x− y〉

• Gradient satisfies (add two copies with x and y swapped):

〈∇f(x)−∇f(y), x− y〉 ≥ 0

which is referred to that ∇f is monotone

9

Monotone operator

• Monotonicity of ∇f :

〈∇f(x)−∇f(y), x− y〉 ≥ 0

• Graphical representation

0 x− y

then ∇f(x)−∇f(y) in gray area (since scalar product positive)

10

Lipschitz and monotone

• γ∇f monotone and 0.5-Lipschitz:

x

γ∇f

x

−γ∇f

x

I − γ∇f

• May still become further away from fixed-point after iteration

11

Baillon-Haddad theorem — Cocoercivity

• If f is convex (∇f monotone) and ∇f β-Lipschitz
• Then ∇f is 1

β -cocoercive: ∇f = β
2 (I −N) with N nonexpansive

• Graphical representation

0 x− y
β

• Always: 1
β -cocoercive implies β-Lipschitz

• For gradient of convex functions, converse implication holds
• This is known as Baillon-Haddad theorem

12

Gradient mapping properties

• ∇f is 1
β -cocoercive with β = 1

2

• I − γ∇f with γ = 3:

x

γ∇f

x

−γ∇f

x

I − γ∇f

• We have

I − γ∇f = I − γ β2 (I −N) = (1− γβ
2)I + γβ

2 N

13

Averaged operators

• For cocoercive ∇f , gradient mapping satisfies

I − γ∇f = (1− γβ
2)I + γβ

2 N

with N nonexpansive
• Operators T of the form

T = (1− α)I + αN

with α ∈ (0, 1) are called averaged
• Graphical representation (right: x? = Tx? and shifted by x?)

0 x− y x? x

– α = 0.25 – α = 0.5 – α = 0.75
• Gradient mapping I − γ∇f averaged if γβ

2 ∈ (0, 1)
14

Composition of averaged operators

• composition of averaged operators is averaged

• assume that T1 is α1-averaged and T2 is α2-averaged, αi ∈ (0, 1)

• then T2T1 is α
α+1 -averaged with α = α1

1−α1
+ α2

1−α2

• example α1 = α2 = 0.5 ⇒ T1T2 is 2
3 -averaged

15

Iteration example - α = 0.5

• rotation operator Rθ with θ = 50◦ (nonexpansive)

• fixed-point x? at origin

• iterate 0.5-averaged operator

x?

16

Convergence – Intuition from figures

• Let T be α-averaged with α ∈ (0, 1)

• Then

xk+1 = Txk

converges to fixed-point of T (provided it exists)

• Intuition: sufficiently much closer to fixed-point in every iteration

x? x

17

Convergence – Theory

1. Let T be α-averaged and R be 2-cocoercive, then

T = I − αR

(fixed-point of T ⇔ zero of R)

2. R is β-cocoercive if and only if

〈Rx−Ry, x− y〉 ≥ β‖Rx−Ry‖2

3. Derive algorithm inequality and use: xk → fixT if (and only if)
• Rxk → 0 as k →∞
• ‖xk − x?‖ converges for all x? ∈ fixT

18

Part 1

• Recall α-averaged T

T = (1− α)I + αN

• Recall β-cocoercive R

R = 1
2β (I −N)

• Therefore

T = (1− α)I + αN = I − α(I −N) = I − αR

for 1
2 -cocoercive R

19

Part 2

• Recall β-cocoercive R

R = 1
2β (I −N)

• Therefore

‖Rx−Ry‖2 = ‖ 1
2β (x−Nx)− 1

2β (y −Ny)‖2

= 1
4β2 (‖x− y‖2 + ‖Nx−Ny‖2 − 2〈x− y,Nx−Ny〉

= 1
4β2 (−‖x− y‖2 + ‖Nx−Ny‖2

+ 2〈x− y, x− y − (Nx−Ny)〉)
≤ 1

2β2 〈x− y, x− y − (Nx−Ny)〉

= 1
β 〈x− y,Rx−Ry〉

20

Part 3

• Algorithm xk+1 = Txk = xk − αRxk satisfies

‖xk+1 − x?‖2 = ‖xk − αRxk − x?‖2

= ‖xk − x?‖2 − 2α〈Rxk, xk − x?〉+ α2‖Rxk‖2

= ‖xk − x?‖2 − 2α〈Rxk −Rx?, xk − x?〉+ α2‖Rxk −Rx?‖2

≤ ‖xk − x?‖2 − α(1− α)‖Rxk −Rx?‖2

= ‖xk − x?‖2 − α(1− α)‖Rxk‖2

• Let α ∈ (0, 1) to conclude that
• Rxk → 0 as k →∞
• ‖xk − x?‖ converges for all x? ∈ fixT

and apply result to get xk → x? ∈ fixT

21

Summary so far

• Have considered gradient method for

minimize
x

f(x)

where f is convex and differentiable with Lipschitz gradient

• Important property for convergence; Cocoercivity of gradient

• Follows from Baillon-Haddad theorem

• Implies that gradient mapping is iteration of averaged map

22

Composite form

• Next, consider composite form

minimize
x

f(x) + g(x)

where f as before and g convex and nonsmooth

• Handle f via gradient as before

• Handle g via proximal operator

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

where γ > 0 is a parameter

23

Prox is generalization of projection

• Introduce the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C
∞ otherwise

(we can use extended valued functions that take value ∞)

• Then

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 : x ∈ C)

= argmin
x

(1
2‖x− z‖

2
2 + ιC(x))

= proxιC (z)

projection onto C equals prox of indicator function of C

24

Examples of proximal operators

• Quadratic function, g(x) = 1
2x

THx+ hTx:

proxγg(z) = (I + γH)−1(z − γh)

• The squared 2-norm, g(x) = 1
2‖x‖

2
2:

proxγg(z) = (1 + γ)−1z

• The 2-norm, g(x) = ‖x‖2:

proxγg(z) =

{
(1− γ/‖z‖2)z if ‖z‖2 ≥ γ
0 otherwise

• Affine subspace, V = {x : Ax = b}:

proxιV (z) = ΠV (z) = z −AT (AAT)−1(Az − b)

25

Piece-wise linear function

• Define hi : R→ R is

hi(x) =


cl(l − x) if x ≤ l
0 if l ≤ x ≤ u
cu(x− u) if x ≥ u

where cl, cu ∈ (0,∞] (∞ included) and l ≤ u
• graphical representations of different hi

cl = 1, cu = 0

l = 1, u =∞
cl = cu =∞
l = −1, u = 1

cl = cu = 1

l = u = 0

• special cases of hi
• hinge loss (SVM)
• upper and lower bounds
• “soft” upper and lower bounds
• absolute value

26

Prox of hi

• Prox of hi:

proxγhi
(z) =



z + γcl if z ≤ l − γcl
l if l − γcl ≤ z ≤ l
z if l ≤ z ≤ u
u if u ≤ z ≤ u+ γcu

z − γcu if z ≥ u+ γcu

• Graphical representation (l = −1, u = 1.5, γcl = 1, γcu = 2):

l

l − γcl
u

u+ γcu
l

u

27

Examples prox hi

• Hinge loss, g = hi with l = 1, u =∞, cl = 1, cu = 0:

proxγg(z) =


z + γ if z ≤ 1− γ
1 if 1− γ ≤ z ≤ 1

z if z ≥ 1

• Absolute value, g = hi with l = u = 0 and cl = cu = 1:

proxγg(z) =


z + γ if z ≤ −γ
0 if − γ ≤ z ≤ γ
z − γ if z ≥ γ

• Upper and lower bounds, g = hi with l < u and cl = cu =∞:

proxγg(z) =


l if z ≤ l
z if l ≤ z ≤ u
u if u ≤ z

28

Computational cost

• Computing prox requires solving optimization problem

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

• Prox typically more expensive to evaluate than gradient

• Example: Quadratic g(x) = 1
2x

THx+ hTx:

proxγg(z) = (I + γH)−1(z − γh), ∇g(z) = Hz − h

• Often use prox for nondifferentiable and separable functions

29

Prox for separable functions

• Separable function

g(x) =

n∑
i=1

gi(xi)

where x = (x1, . . . , xn):

proxγg(z) =

proxγg1(z1)
...

proxγgn(zn)


• Decomposes into n individual proxes ⇒ cheap to evaluate

• 1-norm ‖x‖1, upper/lower bounds, hinge loss constructed from hi

30

Property of proximal operator

• Proximal operator is 1-Lipschitz, i.e., nonexpansive

• It is also gradient of convex function

• Hence, it is 1-cocoercive, i.e., 1
2 -averaged

proxγf = 1
2 (I +N)︸ ︷︷ ︸

1−cocoercive

= (1− 1
2)I + 1

2N︸ ︷︷ ︸
1
2−averaged

0 x− y

• This property makes it useful for algorithms

31

Proximal gradient method

• Applicable to models

minimize
x

f(x) + g(x)

• The method iterates

xk+1 = proxγg(I − γ∇f)xk

• Prox generalizes projection ⇒ generalizes projected gradient

• Easily implemented using ProximalOperators package in Julia

32

Why does it work?

• The point x? solves

minimize
x

f(x) + g(x)

if and only if fixed-point to proximal gradient mapping

x? = proxγg(I − γ∇f)x?

• Iteration of proxγg(I − γ∇f)x? converges to fixed-point – why?

33

Convergence

• Know gradient mapping γβ
2 -averaged if γ ∈ (0, 2

β)

• Know that proxγf is 1
2 -averaged for all γ > 0

• Composition proxγg(I − γ∇f) is therefore also averaged

• Iteration of averaged map converges to fixed-point, i.e., solution

34

Another way to prove convergence

• Can prove convergence in similar but different way

• Use nonexpansiveness of proxγg and 1
β -cocoercivity of ∇f

‖xk+1 − x?‖2 = ‖proxγg(I − γ∇f)xk − proxγg(I −∇f)x?‖2

≤ ‖xk − γ∇f(xk)− (x? − γ∇f(x?))‖2

= ‖xk − x?‖2 − 2γ〈∇f(xk)−∇f(x?), xk − x?〉
+ γ2‖∇f(xk)−∇f(x?)‖2

= ‖xk − x?‖2 − γ(2
β − γ)‖∇f(xk)−∇f(x?)‖2

• Sufficient decrease if γ ∈ (0, 2
β), just like gradient method

35

Summary

• f convex and ∇f Lipschitz ⇒ ∇f cocoercive (Baillon-Haddad)

• ∇f cocoercive implies I − γ∇f averaged (for small γ)

• proxγg is 1
2 -averaged

• Composition of averaged is averaged; proxγg(I − γ∇f) averaged

• Iteration of averaged operator converges to fixed-point

• Fixed-point of proxγg(I − γ∇f) is solution to problem

36

Next lecture

• Apply method to formulations from Lecture 1

• Modify method to exploit structure
• Stochastic gradients
• Coordinate-wise updates

37

