Proximal Gradient Method

Pontus Giselsson

Today’s lecture

® Proximal gradient method

o Key properties for convergence

Problem formulation

® Empirical risk minimization problems are of form

N
e . 1
minimize Z fi(x) +g(x)
i=1
;,_/
f(=z)
® \We assume that:
® all f; and g are convex
® all f; are differentiable with L; Lipschitz gradient

IVfi(z) = V)l < Lillz — y|
® f has L-Lipschitz gradient

® g is not necessarily differentiable (1-norm, indicator of set)
® g is (typically) separable (often with g1 = ... = g»)

g(x) = Z gi(w:)

® (Note = and y are variables here, not data! Also x; is ith element)

Lipschitz continuity

® The gradient V f is -Lipschitz continuous if

IV (z) = VIl < Blle =yl

holds for all z,y
® Graphical representation (Vf(z) — Vf(y) in gray area)

® 1-Lipschitz is called nonexpansive

Gradient method with Lipschitz gradient

® Let v be such that 7V f is %—Lipschitz
® Gradient method

Ty = (I =YV g
tries to solve problem (which is special case with g = 0):
minixmize f(z)
® Problem solved if Vf(z*) =0, i.e., if
z* = (I —yVf)z¥,

i.e., x* is fixed-point of forward (gradient) step (I —~Vf)

Gradient mapping properties

® The gradient mapping G := I — vV f satisfies
® (recall YV f is i-Lipschitz)

YWV f -V f I —~Vf

® Rightmost figure shows where G(z) — G(y) can end up

Gradient mapping properties

® Let y = a* with o* fixed-point of I — 4V f and shift figure by x*:

FEr (~P

I—~Vf I —~Vf

Right figure shows where G(z) — G(z*) + * = G(x) can end up
Gradient step G(x) = I —yV f can take you further away from z*

Gradient method does not work?

(Recall: fixed-point z* of G = I — vV f is solution to problem)

Circle exercise

® |f T — Ty ends up in gray area, given x —y, how about aT+6I?
® Take every possible v = Tz — T’y and compute av + Sz —

- @
ASa

2T —1.51

@‘

Convexity

® We have not exploited that f is convex

¢ A differentiable function is convex if and only if for all z,y

f(@) > fy) + (Vf(y),z —y)

® Gradient satisfies (add two copies with = and y swapped):

(Vi(@) =V i),z —y) >0

which is referred to that V f is monotone

Monotone operator

® Monotonicity of Vf:

(Vf(x) =V f(y),z—y) =0

® Graphical representation

0x xr—y

then Vf(x) — Vf(y) in gray area (since scalar product positive)

10

Lipschitz and monotone

® yV f monotone and 0.5-Lipschitz:

YWV f -V f I—~Vf

® May still become further away from fixed-point after iteration

11

Baillon-Haddad theorem — Cocoercivity

e If fis convex (Vf monotone) and V f S-Lipschitz
® Then Vf is g-cocoercive: Vf = 5(I — N) with N nonexpansive
® Graphical representation

® Always: %—cocoercive implies §-Lipschitz

® For gradient of convex functions, converse implication holds
® This is known as Baillon-Haddad theorem
12

Gradient mapping properties

e Vfis %—cocoercive with g =1
o [—~Vf with y=3:

YWVf -V f I—~Vf
® \We have

I—Vf=I-~78I-N)=01-8)I+%N

13

Averaged operators

® For cocoercive V f, gradient mapping satisfies
[-Vi=(1-21+2N

with N nonexpansive
® Operators T of the form

T=01-a)l+aN

with o € (0, 1) are called averaged
® Graphical representation (right: * = Tx* and shifted by z*)

m x

O-a=025 O-a=05 O-a=075
e Gradient mapping I — vV f averaged if % € (0,1)

14

Composition of averaged operators

® composition of averaged operators is averaged

® assume that T1 is ap-averaged and T5 is ag-averaged, ay; €

® then 15T} is JS7-averaged with a = 13‘;1 + 13"32

® example oy = as = 0.5 = TiT5 is g—averaged

(0,1)

15

Iteration example - a = 0.5

® rotation operator Ry with § = 50° (nonexpansive)
® fixed-point z* at origin

® iterate 0.5-averaged operator

16

Convergence — Intuition from figures

® let T be a-averaged with oo € (0,1)
® Then

g1 = Txy

converges to fixed-point of T' (provided it exists)

® |Intuition: sufficiently much closer to fixed-point in every iteration

17

Convergence — Theory

1. Let T be a-averaged and R be 2-cocoercive, then
T=I1-aR

(fixed-point of T' < zero of R)
2. R is B-cocoercive if and only if

(Rx — Ry,x —y) > B||Rx — Ry|?

3. Derive algorithm inequality and use: xj, — fixT if (and only if)

® Rxp —+0ask— oo
® ||z — x*|| converges for all z* € fixT

18

Part 1

® Recall a-averaged T
T=01-a)l+aN

® Recall S-cocoercive R

® Therefore
T=(1-a)l+aN=I—-a(I—-N)=1-aR

for %—cocoercive R

19

Part

® Recall S-cocoercive R

® Therefore

| Rz — Ry])*

l\D

28

B
=
)

2

+2
1

DN

=

BQ

5 (
(
(
(
(

x— Nzx) —

2

35y — Ny)|I*

|z —yl> + IINx — Ny|*> -
—|lz = y|* + | Nz — Ny|?

—y, T —y

—Yyr -y

x —y, Rx — Ry)

y — (Nz — Ny)))
(Nz — Ny))

(m—y,Nx—Ny}

20

Part 3

® Algorithm xy11 = Txy, = x — aRxy, satisfies
lorsr = 2*||* = [log — Ry — 2*||?

= |lzx — 2*||? = 2a(Ray,, v — =*) 4+ || Ry |2

= |lzp — 2*|* — 2Ry — Rx*, xp, — 2*) + || Rxy, — R

< [l —a*|* = (1 —)| Rey, — Ra*||?

= llor — 2*|* = a(1 - o) || Ra||?

® Let a € (0,1) to conclude that

® Rxpy —+0ask — o0
® ||z, — x*|| converges for all z* € fixT

and apply result to get z, — x* € fixT

21

Summary so far

Have considered gradient method for
minimize f(x)
€T

where f is convex and differentiable with Lipschitz gradient
Important property for convergence; Cocoercivity of gradient
Follows from Baillon-Haddad theorem

Implies that gradient mapping is iteration of averaged map

22

Composite form

® Next, consider composite form
minimize f(x) + g(x)
xr

where f as before and g convex and nonsmooth
® Handle f via gradient as before

® Handle g via proximal operator
prox.,(z) = argmin(g(z) + 5 | — 2[[3)
xr

where v > 0 is a parameter

23

Prox is generalization of projection

® |ntroduce the indicator function of a set C

(@) = {o ifzcC

oo otherwise

(we can use extended valued functions that take value co)
® Then

Il (2) = argmin(|jz — z||2 : x € C)
= argmin(3 |z — 2|3 : z € C)
= argmin(} | — =13 + 1c(2)
= proch(z)

projection onto C' equals prox of indicator function of C

24

Examples of proximal operators

Quadratic function, g(z) = 327 Ha + hTa:

prox, (=) = (I +7H) ™ (z = 4h)

The squared 2-norm, g(z) = 3||z[3:

prox., () = (1+7) 712

The 2-norm, g(z) = ||z|2:

A =A/llzll2)z i [lz]l2 >y
prox,g(2) = {O otherwise

Affine subspace, V = {z : Az = b}:

prox, (2) =y (z) = z — AT(AAT)"1(Az — b)

25

Piece-wise linear function

® Defineh; : R—Ris

a(l—z) ifz<li

cu(r—u) fzx>u

where ¢, ¢, € (0,00] (00 included) and I < u
® graphical representations of different h;

N

cg=1¢,=0 Cl = Cy = X0

=1 u=00 l=—1,u=1

® special cases of h;

hinge loss (SVM)

upper and lower bounds

“soft” upper and lower bounds
absolute value

fl<z<u

26

Prox of h;

® Prox of h;:

zZ+ e

l
prox.; (2) = ¢ z

u

z— ey

® Graphical representation (I = —1,u = 1.5,y¢; = 1,v¢, = 2):
A

l

if z<l—7q

ifl —vyeq <2<
ifl<z<u
ifu<z<u+yc,
if 22> u+ e,

7

l—yq

U —|—"ycu

27

Examples prox h;

® Hinge loss, g = h; with I =1, u =00, ¢; =1, ¢, = 0:
z4+y fz<1—vw
prOX'yg(z): 1 ifl—vy<2<1
z if z>1
® Absolute value, g = h; withl=u=0and ¢ = ¢, = 1:
z4+v fz<—y
pI'OX,Yg(Z): 0 if 7’y§z§fy
z—vy ifz>x

® Upper and lower bounds, g = h; with I < u and ¢; = ¢, = o©:

I ifz<l
pI'OX,Yg(Z) =<z ifl <z<u
u ifu<z

28

Computational cost

Computing prox requires solving optimization problem
prox,,(2) = argmin(g(z) + 3 llz = =[3)

Prox typically more expensive to evaluate than gradient
Example: Quadratic g(z) = 12" Hz + hTa:

prox,,(z) = (I +7H)'(z—h), Vg(z)= Hz—h

Often use prox for nondifferentiable and separable functions

29

Prox for separable functions

® Separable function
g(x) =Y gi(w:)
i=1

where x = (z1,...,2,):

prox. . (21)
prox.,(z) = :

prox., (zn)

® Decomposes into n individual proxes = cheap to evaluate

® 1-norm ||z||1, upper/lower bounds, hinge loss constructed from h;

30

Property of proximal operator

® Proximal operator is 1-Lipschitz, i.e., nonexpansive

L_averaged

® [t is also gradient of convex function
"2

® Hence, it is 1-cocoercive, i.e.

prox,; = 3(I+N) =(1—$)I+iN
———

N—_——
1_ averaged

1—cocoercive
2

® This property makes it useful for algorithms

31

Proximal gradient method

Applicable to models
minimize f(x) + g(x)
xr
The method iterates

Tpi1 = prox, (I —yV)z

Prox generalizes projection = generalizes projected gradient

Easily implemented using ProximalOperators package in Julia

32

Why does it work?

® The point z* solves
minixmize f(x) + g(x)
if and only if fixed-point to proximal gradient mapping
x* = prox, (I =V f)x*

® lteration of prox, (I — 'V f)z* converges to fixed-point — why?

33

Convergence

Know gradient mapping %—averaged if v € (0, %)
Know that prox.,; is %—averaged for all v >0
Composition prox., (I — vV f) is therefore also averaged

Iteration of averaged map converges to fixed-point, i.e., solution

34

Another way to prove convergence

® Can prove convergence in similar but different way

® Use nonexpansiveness of prox, , and %—cocoercivity of Vf

|1 = llprox, o (I =V flay — prox, (I — V f)z* |
< llax =V (@) = (" =V f(@)]?
= llow — "I = 29(V f(2x) = Vf(2*), 21 — 27)
+2 IV f(xx) = V f(2)]?
= llaw — ¥ = (= DIVF(@r) = V()]

lzps1 — 2

o Sufficient decrease if v € (0, %) just like gradient method

35

Summary

f convex and V f Lipschitz = V f cocoercive (Baillon-Haddad)
V f cocoercive implies I — vV f averaged (for small 7)

1
prox., is 5-averaged

79
Composition of averaged is averaged; prox, (I — 7V f) averaged
Iteration of averaged operator converges to fixed-point

Fixed-point of prox. (I —~Vf) is solution to problem

36

Next lecture

® Apply method to formulations from Lecture 1
® Modify method to exploit structure

® Stochastic gradients
® Coordinate-wise updates

37

