Go to the documentation of this file.
50 for (i = 0; i < 3; i++ ) eXm.
pData[i] /= 2.0;
63 mat_mul(&Sm, &tmp31Am, &tmp31Cm);
68 for (i = 0; i < 3; i++) tmp31Am.
pData[i] = (ewm.
pData[i] / 2.0);
75 mat_mul(&Jm, &tmp31Am, &tmp31Bm);
78 for (i = 0; i < 3; i++ ){
107 free(XeCmhatWrmXem.
pData);
int update_attitude_FSF_SU2_continuous(ref_state_qw_t *reference, dyn_state_qw_t *state, con_state_qw_fsf_t *controller)
Update using the continuous full state feedback (FSF) on SU(2)
void matrix_allocate(matrix_double_t *matrix, int numRows, int numCols)
Allocate memory for a matrix struct of given dimensions.
Matrix object used for all matrix manipulation.
void mat_add_inplace(matrix_double_t *Amat, matrix_double_t *Bmat)
In-place matrix addition, A <– A + B, asserts that this is done correctly.
int cont_SO3_hat(matrix_double_t *in, matrix_double_t *out)
The hat operator on SO3.
int cont_SU2_hat(matrix_double_t *in, matrix_double_t *out)
The hat map on SU(2)
Reference signal structure for the attitude FSF on S(3) or SU(2)
double cont_SO3_distance(matrix_double_t *R1, matrix_double_t *R2)
The distance Phi(R1, R2) defined on SO3.
Complete state of the attitude FSF on SO(3) or SU(2)
int cont_SU2_product(matrix_double_t *q, matrix_double_t *p, matrix_double_t *out)
Product of two elements of SU(2)
void matrix_define(matrix_double_t *matrix, int numRows, int numCols, double *data)
Define a matrix to use already allocated memory.
Dynamical states, assumed known in the attitude FSF on SO(3) or SU(2)
void mat_mul(matrix_double_t *Amat, matrix_double_t *Bmat, matrix_double_t *Cmat)
and asserts that this is done correctly
int cont_SU2_vee(matrix_double_t *in, matrix_double_t *out)
The vee map on SU(2)
void mat_sub_inplace(matrix_double_t *Amat, matrix_double_t *Bmat)
In-place subtraction addition, A <– A - B, asserts that this is done correctly.
double cont_dot_product(matrix_double_t *vecA, matrix_double_t *vecB)
Evaluates the dot product of two vectors.
void mat_sub(matrix_double_t *Amat, matrix_double_t *Bmat, matrix_double_t *Cmat)
Matrix subtraction, C <– A - B, and asserts that this is done correctly.
int cont_quat_2_SO3(matrix_double_t *q, matrix_double_t *R)
Embedding relating SU(2) to SO(3)
double cont_SU2_distance(matrix_double_t *q1, matrix_double_t *q2)
Evaluate distance Gamma(q1, q2) in [0,2] defined on SU2.
int assert_attitude_FSF_SU2(con_state_qw_fsf_t *controller)
Assert that the SU(2) controller is feasible.
int cont_SU2_conjugate(matrix_double_t *qin, matrix_double_t *qout)
Conjugate an element of SU(2)